初中数学北京课改版八年级下册第十四章 一次函数综合与测试综合训练题
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一次函数y=kx+b(k≠0)的图象如图所示,当x>2时,y的取值范围是( )
A.y<0B.y>0C.y<3D.y>3
2、甲、乙两名运动员在笔直的公路上进行自行车训练,行驶路程S(千米)与行驶时间t(小时)之间的关系如图所示,下列四种说法:①甲的速度为40千米/时;②乙的速度始终为50千米/时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,t =0.5或t =2或t =4,其中正确的是( )
A.①③B.①④C.①②③D.①③④
3、下列命题为真命题的是( )
A.过一点有且只有一条直线与已知直线平行
B.在同一平面内,若,,则
C.的算术平方根是9
D.点一定在第四象限
4、如图,l1反映了某公司产品的销售收入与销售量的关系;l2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量( )
A.小于12件B.等于12件C.大于12件D.不低于12件
5、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是( ).
A.-2B.2
C.4D.﹣4
6、已知点A(-2,y1)和B(-1,y2)都在直线y=-3x-1上,则y1,y2的大小关系是( )
A.y1>y2B.y1<y2C.y1=y2D.大小不确定
7、如图,直线l是一次函数的图象,下列说法中,错误的是( )
A.,
B.若点(-1,)和点(2,)是直线l上的点,则
C.若点(2,0)在直线l上,则关于x的方程的解为
D.将直线l向下平移b个单位长度后,所得直线的解析式为
8、已知4个正比例函数y=k1x,y=k2x,y=k3x,y=k4x的图象如图,则下列结论成立的是( )
A.k1>k2>k3>k4B.k1>k2>k4>k3
C.k2>k1>k3>k4D.k4>k3>k2>k1
9、如图,一次函数的图象经过点,则下列结论正确的是( )
A.图像经过一、二、三象限B.关于方程的解是
C.D.随的增大而减小
10、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )
A.-3B.-1C.2D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、直线y=x-2与y轴交点坐标是_____.
2、函数的定义域是_____.
3、一个用电器的电阻是可调节的,其调节范围为:110~220Ω.已知电压为220ᴠ,这个用电器的功率P的范围是:___________ w.(P表示功率,R表示电阻,U表示电压,三者关系式为:P·R=U²)
4、将一次函数的图像沿x轴向左平移4个单位长度,所得到的图像对应的函数表达式是______.
5、(1)每一个含有未知数x和y的二元一次方程,都可以改写为______的形式,所以每个这样的方程都对应一个一次函数,于是也对应一条_____,这条直线上每个点的坐标(x,y)都是这个二元一次方程的解.
(2)从“数”的角度看,解方程组,相当于求_____为何值时对应的两个函数值相等,以及这两个函数值是______;从形的角度看,解方程组相当于确定两条相应直线的______.
三、解答题(5小题,每小题10分,共计50分)
1、已知,一次函数y=2x+4的图象与x轴、y轴分别交于点A、点B,正方形BOCD的顶点D在第二象限内,直线DE交AB于点E,交x轴于点F,
(1)求点D的坐标和AB的长;
(2)若△BDE≌△AFE,求点E的坐标;
(3)若点P、点Q是直线BD、直线DF上的一个动点,当△APQ是以AP为直角边的等腰直角三角形时,直接写出Q点的坐标.
2、在平面直角坐标系中,的顶点,,的坐标分别为,,.与关于轴对称,点,,的对应点分别为,,.请在图中作出,并写出点,,的坐标.
3、在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,的顶点的坐标分别是,,.
(1)求的面积;
(2)在图中作出关于轴的对称图形;
(3)写出点,的坐标.
4、在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.
(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1 ,3),点B坐标为(2 ,1);
(2)请画出△ABC关于y轴对称的图形△A1B1C1,并写出点B1的坐标为 ;
(3)P为y轴上一点,当PB+PC的值最小时,P点的坐标为 .
5、艺术节前夕,为了增添节日气氛,某校决定采购大小两种型号的气球装扮活动场地,计划购买4盒大气球,x盒小气球().A、B两个商场中,两种型号的气球原价一样,都是大气球50元/盒,小气球10元/盒,但给出了不同的优惠方案:
A商场:买一盒大气球,送一盒小气球;
B商场:一律九折优惠;
(1)分别写出在两个商场购买时需要的花费y(元)与x(盒)之间的关系式;
(2)如果学校最终决定购买10盒小气球,那么选择在哪个商场购买比较合算?
-参考答案-
一、单选题
1、A
【解析】
【分析】
观察图象得到直线与x轴的交点坐标为(2,0),根据一次函数性质得到y随x的增大而减小,所以当x>2时,y<0.
【详解】
∵一次函数y=kx+b(k≠0)与x轴的交点坐标为(2,0),
∴y随x的增大而减小,
∴当x>2时,y<0.
故选:A.
【点睛】
本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为
.
2、D
【解析】
【分析】
分析图像上每一段表示的实际意义,再根据行程问题计算即可.
【详解】
①甲的速度为,故正确;
②时,已的速度为,后,乙的速度为,故错误;
③行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确;
④由①②③得:甲的函数表达式为:,
已的函数表达为:时,,时,,
时,甲、乙两名运动员相距,
时,甲、乙两名运动员相距,
时,甲、乙两名运动员相距为,故正确.
故选:D.
【点睛】
本题为一次函数应用题,此类问题主要通过图象计算速度,即分析每一段表示的实际意义进而求解.
3、B
【解析】
【分析】
直接利用平行线的判定和性质、算术平方根的定义以及点的坐标特点分别判断即可.
【详解】
解:A、过直线外一点有且只有一条直线与已知直线平行,原命题是假命题;
B、在同一平面内,如果a⊥b,b⊥c,则a//c,原命题是真命题;
C、的算术平方根是3,原命题是假命题;
D、若a=0,则−a2=0,则点(1,−a2)在x轴上,故原命题是假命题;
故选:B.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
4、C
【解析】
【分析】
根据图象找出在的上方即收入大于成本时,x的取值范围即可.
【详解】
解:根据函数图象可知,当时,,即产品的销售收入大于销售成本,该公司盈利.
故选:C.
【点睛】
本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x的取值范围是本题的关键.
5、B
【解析】
【分析】
当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.
【详解】
解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,
②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,
∵|k|越大,它的图象离y轴越近,
∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.
故选:B.
【点睛】
本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.
6、A
【解析】
【分析】
首先判定出一次函数的增减性为y随x的增大而减小,然后即可判断出y1,y2的大小关系.
【详解】
解:∵一次函数y=-3x-1中,k=-3<0,
∴y随x的增大而减小,
∵-2<-1,
∴y1>y2.
故选:A.
【点睛】
此题考查了一次函数的增减性,比较一次函数中函数值的大小,解题的关键是根据题意判断出一次函数的增减性.
7、B
【解析】
【分析】
根据一次函数图象的性质和平移的规律逐项分析即可.
【详解】
解:A.由图象可知,,,故正确,不符合题意;
B. ∵-1<2,y随x的增大而减小,∴,故错误,符合题意;
C. ∵点(2,0)在直线l上,∴y=0时,x=2,∴关于x的方程的解为,故正确,不符合题意;
D. 将直线l向下平移b个单位长度后,所得直线的解析式为+b-b=kx,故正确,不符合题意;
故选B.
【点睛】
本题考查了一次函数的图象与性质,以及一次函数的平移,熟练掌握性质和平移的规律是解答本题的关键.
8、A
【解析】
【分析】
首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.
【详解】
解:首先根据直线经过的象限,知:k3<0,k4<0,k1>0,k2>0,
再根据直线越陡,|k|越大,知:|k1|>|k2|,|k4|>|k3|.
则k1>k2>k3>k4,
故选:A.
【点睛】
本题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.
9、A
【解析】
【分析】
根据函数图象可知图象经过一、二、三象限,即可判断A选项,从图象上无法得知与轴的交点坐标,无法求得方程的解,即可判断B选项,根据图象与轴的交点,可知,进而可知,即可判断C选项,根据图象经过一、二、三象限,,即可知随的增大而增大,进而判断D选项
【详解】
A. 图像经过一、二、三象限,故该选项正确,符合题意;
B. 关于方程的解不一定是,不正确,不符合题意
C. 根据图象与轴的交点,可知,则,故该选项不正确,不符合题意;
D. 图象经过一、二、三象限,,随的增大而增大,故该选项不正确,不符合题意;
故选A
【点睛】
本题考查了一次函数图象的性质,与坐标轴交点问题,增减性,熟练掌握一次函数图象的性质是解题的关键.
10、B
【解析】
【分析】
先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.
【详解】
解:根据题意,
∵y1>y2,
∴,
解得:,
∴,
∴;,
∵当x<1时,y1>y2,
∴
∴,
∴;
∴k的值可以是-1;
故选:B.
【点睛】
本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.
二、填空题
1、 (0,-2)
【解析】
【分析】
当x=0时,求y的值,从而确定直线与y轴的交点.
【详解】
解:∵当x=0时,y=-2,
∴直线y=x-2与y轴交点坐标是(0.-2).
故答案为:(0,-2).
【点睛】
本题考查一次函数与坐标轴的交点坐标,利用数形结合思想解题是关键.
2、
【解析】
【分析】
函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.
【详解】
解:根据题意得:3x+6≥0,
解得x≥﹣2.
故答案为:x≥﹣2.
【点睛】
本题主要考查自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
3、220≤P≤440
【解析】
【分析】
由题意根据题目所给的公式分析可知,电阻越大则功率越小,当电阻为110Ω时,功率最大,当电阻为220Ω时,功率最小,从而求出功率P的取值范围.
【详解】
解:三者关系式为:P·R=U²,可得,
把电阻的最小值R=110代入得,得到输出功率的最大值,
把电阻的最大值R=220代入得,得到输处功率的最小值,
即用电器输出功率P的取值范围是220≤P≤440.
故答案为:220≤P≤440.
【点睛】
本题考查一元一次不等式组与函数的应用,解答本题的关键是读懂题意,弄清楚公式的含义,代入数据,求出功率P的范围.
4、##y=4+2x
【解析】
【分析】
根据一次函数的平移规律:“上加下减,左加右减”来解题即可.
【详解】
由一次函数的图象沿x轴向左平移4个单位后,得到的图象对应的函数关系式为,
化简得:,
故答案为:.
【点睛】
此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意一次函数的平移规律:“上加下减,左加右减”.
5、 y=kx+b(k,b是常数,k≠0) 直线 自变量 多少 交点坐标
【解析】
【分析】
(1)根据一次函数与二元一次方程的关系解答即可;
(2)根据一次函数与二元一次方程组的关系解答即可;
【详解】
(1)一般地,任何一个二元一次方程都可转化为一次函数的形式,
∴每个二元一次方程都对应一个一次函数,也对应一条直线,
故答案为:y=kx+b(k,b是常数,k≠0);直线
(2)方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
∴答案为:自变量;多少;交点坐标
【点睛】
此题考查一次函数与二元一次方程问题,关键是根据一次函数与二元一次方程(组)的关系解答.
三、解答题
1、(1)(-4,4),AB= ;(2)(-1,2);(3)(, )、(-6, )、(14,-8)、(2,0)
【解析】
【分析】
(1)分别令一次函数解析式中的x=0、y=0,求出y、x,据此可得点A、B的坐标,求出AB的值,由正方形的性质可得点D的坐标;
(2)由全等三角形的性质可得AF=BD=4,求出直线DF的解析式,然后联立直线AB的解析式可得点E的坐标;
(3)分情况讨论:当点P在线段BD上时,利用函数解析式可求出点F的坐标,可证得AF=AP,可知点Q与点F重合,即可得到点Q的坐标;如图,当点Q在DF的延长线上,∠APQ=90°时,过点Q作QM⊥BD于点M,过点A作HA⊥BD于点H,易证△APH≌△PMQ,BH=2=AO,利用全等三角形的性质可证得QM=HP,AH=PM=4,利用函数解析式表示出点Q(a,),可表示出MQ,PH的长,根据PB的长,建立关于a的方程,解方程取出a的值,然后求出点Q的纵坐标,即可得到点Q的坐标;如图,当点Q在FD的延长线上时,∠QPA=90°,过点Q作QH⊥BD于点H,过点P作PM⊥x轴于点M,设点Q(a,),易证△PHQ≌△APM,利用全等三角形的性质分别表示出BH,OM的长QH的长,根据QH的长建立关于a的方程,解方程求出a的值,即可得到点Q的坐标.
【详解】
解:(1)一次函数y=2x+4的图象与x轴、y轴分别交于点A、点B,
令x=0,y=4;y=0,x=-2
∴点A、B的坐标分别为:(-2,0)、(0,4),
∴OA=2,OB=4
由勾股定理得,AB= ,
∵四边形BOCD是正方形
∴BD=OB=CD=OC=4,
∴D的坐标为(-4,4)
(2)解:∵△BDE≌△AFE,
∴AF=BD=4,
∴OF=2
∴F(2,0),
设直线DF的解析式为
把D(-4,4),F(2,0)代入得,
解得,
∴直线DF的解析式为
联立方程组
解得,
∴点E的坐标为(-1,2)
(3)如图,
当点P在线段BD上时
∵点A(-2,0),点F(2,0)
∴AF=2-(-2)=4,
当点Q与点F重合时,DA⊥BD于点P,
∴DA=AF=4,∠DAF=90°,
∴点Q(2,0);
如图,当点Q在DF的延长线上,∠APQ=90°时,过点Q作QM⊥BD于点M,过点A作HA⊥BD于点H,
易证△APH≌△PMQ,BH=2=AO
∴QM=HP,AH=PM=4,
设点Q(a,)
∴;
∴
解之:a=14
∴当a=14时,y==-8,
∴点Q(14,-8);
如图,当点Q在FD的延长线上时,∠QAP=90°,过点Q作QH⊥x轴于点H,过点P作PM⊥x轴于点M,
易证△AQH≌△APM,
∴QH=AM,PM=AH=4,
∵OA=2,
∴OH=4+2=6,
∴点P的横坐标为-6
当x=-6时y,
∴点Q;
如图,当点Q在FD的延长线上时,∠QPA=90°,过点Q作QH⊥BD于点H,过点P作PM⊥x轴于点M,
设点Q(a,)
易证△PHQ≌△APM,
∴PM=PH=4,AM=QH,
∴BH=-a,OM=-a-4,
∴AM=QH=2-(-a-4)=a+6,QH=
∴
解之:
∴
∴点Q
∴点Q的坐标为:或或(14,-8)或(2,0).
【点睛】
本题属于一次函数综合题,考查了两一次函数图象相交或平行问题,三角形全等及其性质,正方形的性质,一次函数图象与坐标轴交点问题,等腰直角三角形等知识,解题的关键是熟练掌握基本知识.
2、作图见解析,点A' (-3 , 2 ),点B' (-1 , -2 ),点C' (-4 , -3 )
【解析】
【分析】
分别作出A,B,C的对应点,,即可.
【详解】
解: 如图所示.
点A'(-3,2 ),点B'(-1,-2 ),点C'(-4,-3 ).
【点睛】
本题考查了作图-轴对称变换,直角坐标系中表示点的坐标,熟知关于y轴对称的点的坐标特点是解答此题的关键.
3、(1)152;(2)见解析;(3)A1(1,5),C1(4,3)
【解析】
【分析】
(1)根据三角形面积公式进行计算即可得;
(2)可以由三个顶点的位置确定,只要能分别画出这三个顶点关于y轴的对称点,连接这些对称点即可得;
(3)根据(2)即可写出.
【详解】
解:(1)S△ABC=12×5×3=152
(2)如下图所示:
(3)A1(1,5);C1(4,3)
【点睛】
本题考查了画轴对称图形,解题的关键是掌握画轴对称图形的方法.
4、(1)见详解;(2)△A1B1C1即为所求,见详解,(-2,1);(3)(0,3).
【解析】
【分析】
(1)根据点A及点B的坐标,易得y轴在A的左边一个单位,x轴在A的下方3个单位,建立直角坐标系即可;
(2)根据平面直角坐标系求出点C坐标,根据ABC关于y轴对称的图形为△A1B1C1,求出A1(-1,3),B1(-2,1),C1(-4,7),描点A1(-1,3),B1(-2,1),C1(-4,7),再顺次连接即可画出ABC关于y轴对称的图形为△A1B1C1;
(3)过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,直接利用轴对称求最短路线的方法,根据点C的对称点为C1,连接BC1与y轴相交,此交点即为点P即可得出PB+PC的值最小,先证△GBC1为等腰直角三角形,再证△PHB为等腰直角三角形,最后求出y轴交点坐标即可.
【详解】
解:(1)点A坐标为(1 ,3),点B坐标为(2 ,1)
点A向左平移1个单位为y轴,再向下平移3个单位为x轴,建立如图平面直角坐标系,
如图所示:即为作出的平面直角坐标系;
(2)根据图形得出出点C(4,7)
∵△ABC关于y轴对称的图形△A1B1C1,关于y轴对称的点的特征是横坐标互为相反数,纵坐标不变,
∵A(1,3),B (2,1),C(4,7),
∴A1(-1,3),B1(-2,1),C1(-4,7),
在平面直角坐标系中描点A1(-1,3),B1(-2,1),C1(-4,7),
顺次连接A1B1, B1C1, C1 A1,
如图所示:△A1B1C1即为所求,
故答案为:(-2,1);
(3)如图所示:点P即为所求作的点.过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,
∵点C的对称点为C1,
∴连接BC1与y轴相交于一点即为点P,此时PB+PC的值最小,
∵B(2,1),C1(-4,7),
∴C1G=7-1=6,BG=2-(-4)=6,
∴C1G=BG,
∴△GBC1为等腰直角三角形,
∴∠GBC1=45°,
∵∠OHB=90°,
∴△PHB为等腰直角三角形,
∴yP-1=2-0,
解得yP=3,
∴点P(0,3).
故答案为(0,3).
【点睛】
本题考查了建立平面直角坐标系,画轴对称图形,等腰直角三角形判定与性质,最短路径,掌握轴对称的性质及轴对称与坐标的变化规律并利用其准确作图,待定系数法求解析式是解答本题的关键.
5、(1)A:y=10x+160,B:y=9x+180;(2)A商场更合算
【解析】
【分析】
(1)利用购买大气球盒数×单价+小气球去掉赠送的还需购买的盒数×单价列函数关系得出A商场花费,用购买大气球盒数×单价+小气球购买的盒数×单价之和九折列函数关系得出B商场花费即可;
(2)先求A、B两商场花费函数的值,比较大小即可.
【详解】
解:(1)A:y=50×4+10(x-4)=10x+160,
B:y=(50×4+10x)×90%=9x+180;
(2)当时,A:10×10+160=260元,
B:9×10+180=270元,
∵260<270,
∴选择在A商场购买比较合算.
【点睛】
本题考查列函数解析式,函数值,比较大小,掌握列函数解析式的方法,求函数值的注意事项是解题关键.
2020-2021学年第十四章 一次函数综合与测试测试题: 这是一份2020-2021学年第十四章 一次函数综合与测试测试题,共23页。试卷主要包含了下列命题中,真命题是,在下列说法中,能确定位置的是,已知点A等内容,欢迎下载使用。
初中数学第十四章 一次函数综合与测试同步达标检测题: 这是一份初中数学第十四章 一次函数综合与测试同步达标检测题,共25页。
初中第十四章 一次函数综合与测试同步练习题: 这是一份初中第十四章 一次函数综合与测试同步练习题,共24页。试卷主要包含了已知一次函数y=,一次函数y=,点P在第二象限内,P点到x等内容,欢迎下载使用。