开学活动
搜索
    上传资料 赚现金

    2022年强化训练京改版八年级数学下册第十四章一次函数综合练习试卷(含答案解析)

    2022年强化训练京改版八年级数学下册第十四章一次函数综合练习试卷(含答案解析)第1页
    2022年强化训练京改版八年级数学下册第十四章一次函数综合练习试卷(含答案解析)第2页
    2022年强化训练京改版八年级数学下册第十四章一次函数综合练习试卷(含答案解析)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册第十四章 一次函数综合与测试复习练习题

    展开

    这是一份数学八年级下册第十四章 一次函数综合与测试复习练习题,共25页。试卷主要包含了已知点P,函数y=的自变量x的取值范围是,如图,过点A等内容,欢迎下载使用。
    京改版八年级数学下册第十四章一次函数综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,图中的函数图象描述了甲乙两人越野登山比赛.(x表示甲从起点出发所行的时间,表示甲的路程,表示乙的路程).下列4个说法:①越野登山比赛的全程为1000米;②甲比乙晚出发40分钟;③甲在途中休息了10分钟;④乙追上甲时,乙跑了750米.其中正确的说法有(       )个A.1 B.2 C.3 D.42、关于一次函数y=﹣2x+3,下列结论正确的是(  )A.图象与x轴的交点为(,0)B.图象经过一、二、三象限C.yx的增大而增大D.图象过点(1,﹣1)3、一次函数y=-x+2的图象与x轴,y轴分别交于AB两点,以AB为腰,∠BAC=90°,在第一象限作等腰RtABC,则直线BC的解析式为(  )A. B. C. D.4、如图,直线分别交轴于点,则不等式的解集为(       ).A. B. C. D.5、若点A(x1y1)和B(x2y2) 都在一次函数y=(k)x+2(k为常数)的图像上,且当x1<x2时,y1>y2,则k的值可能是(       A.k=0 B.k=1 C.k=2 D.k=36、下列关于变量xy的关系,其中y不是x的函数的是(  )A. B.C. D.7、已知点Pm+3,2m+4)在x轴上,那么点P的坐标为(  )A.(-1,0) B.(1,0) C.(-2,0) D.(2,0)8、函数y的自变量x的取值范围是(  )A.x≠0 B.x≠1 C.x≠±1 D.全体实数9、如图,过点A(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是(  )A.y=2x+3 B.y=x﹣3 C.y=x+3 D.y=3﹣x10、已知正比例函数ykx的函数值yx的增大而减小,则一次函数ykxk的图象大致是(  )A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若点y轴上,则m=_____.2、写一个y关于x的函数,同时满足两个条件:(1)图象经过点(-3,2);(2) yx的增大而增大.这个函数表达式可以为_____________________________.(写出一个即可)3、已知点P(3,1)关于y轴的对称点Q的坐标为 _____.4、如图,直线ly=﹣x,点A1坐标为(﹣3,0).经过A1x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2021的坐标为_____.5、已知点轴上,则________;点的坐标为________.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,,且a,b满足C、D两点分别是y轴正半轴、x轴负半轴上的两个动点:(1)如图1,若,求的面积;(2)如图1,若,且,求D点的坐标;(3)如图2,若,以为边,在的右侧作等边,连接,当最短时,求A,E两点之间的距离;2、为响应政府号召,某地水果种植户借助电商平台,在线下批发的基础上同步在电商平台上零售水果.已知线上零售40千克,线下批发80千克水果共获得4000元;线上零售60千克和线下批发80千克水果销售额相同.(1)求线上零售和线下批发水果的单价分别为每千克多少元?(2)若该地区水果种植户张大叔某月线上零售和线下批发共销售水果2000千克,设线上零售m千克.获得的总销售额为w元.①求wm之间的函数关系式;②若总销售额为70000元,则线上零售量为多少千克?3、某商店销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大销售总利润是多少元?4、张明和爸爸一起出去跑步,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,张明继续前行,5分钟后也原路返回,两人恰好同时到家.张明和爸爸在整个过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示.(1)的值为______;(2)张明开始返回时与爸爸相距______米;(3)第______分钟吋,两人相距900米.5、科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关.当气温是0℃时,音速是331米/秒;当气温是5℃时,音速是334米/秒;当气温是10℃时,音速是337米/秒;当气温是15℃时,音速是340米/秒;当气温是20℃时,音速是343米/秒;当气温是25℃时,音速是346米/秒;当气温是30℃时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系.(2)表格反映了哪两个变量之间的关系?哪个是自变量?(3)当气温是35℃时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系? -参考答案-一、单选题1、C【解析】【分析】根据终点距离起点1000米即可判断①;根据甲、乙图像的起点可以判断②;根据AB段为甲休息的时间即可判断③;设乙需要t分钟追上甲,,求出t即可判断④.【详解】解:由图像可知,从起点到终点的距离为1000米,故①正确;根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故②错误;AB段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故③正确;∵乙从起点到终点的时间为10分钟,∴乙的速度为1000÷10=100米/分钟,设乙需要t分钟追上甲,解得t=7.5,∴乙追上甲时,乙跑了7.5×100=750米,故④正确;故选C.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.2、A【解析】【分析】利用一次函数图象上点的坐标特征,可判断出选项A符合题意;利用一次函数图象与系数的关系,可判断出选项B不符合题意;利用一次函数的性质,可判断出选项C不符合题意;利用一次函数图象上点的坐标特征,可判断出选项D不符合题意.【详解】解:A.当y=0时,﹣2x+3=0,解得:x∴一次函数y=﹣2x+3的图象与x轴的交点为(,0),选项A符合题意;B.∵k=﹣2<0,b=3>0,∴一次函数y=﹣2x+3的图象经过第一、二、四象限,选项B不符合题意;C.∵k=﹣2<0,yx的增大而减小,选项C不符合题意;D.当x=1时,y=﹣2×1+3=1,∴一次函数y=﹣2x+3的图象过点(1,1),选项D不符合题意.故选:A.【点睛】本题主要是考查了一次函数图象上点的坐标特征、一次函数的性质,熟练掌握利用函数表达式求解点的坐标,利用一次函数的性质,求解增减性和函数所过象限,是解决本题的关键.3、D【解析】【分析】由题意易得B的坐标是(0,2),A的坐标是(5,0),作CEx轴于点E,则有∠ACE=∠BAO,然后可得△ABO≌△CAE,进而可得C的坐标是(7,5),设直线BC的解析式是ykxb,最后利用待定系数法可求解.【详解】解:∵一次函数y=-x+2中,x=0得:y=2;令y=0,解得x=5,B的坐标是(0,2),A的坐标是(5,0).若∠BAC=90°,如图1,作CEx轴于点E∵∠BAC=90°,∴∠OAB+∠CAE=90°,又∵∠CAE+∠ACE=90°,∴∠ACE=∠BAO在△ABO与△CAE中,∴△ABO≌△CAEAAS),OBAE=2,OACE=5,OEOAAE=2+5=7.C的坐标是(7,5).设直线BC的解析式是ykxb根据题意得:,解得∴直线BC的解析式是yx+2.故选:D.【点睛】本题主要考查一次函数与几何的综合,熟练掌握一次函数的图象与性质是解题的关键.4、C【解析】【分析】观察图象,可知当x0.5时,y=kx+b>0,y=mx+n<0;当0.5<x<2时,y=kx+b<0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,二者相乘为正的范围是本题的解集.【详解】解:由图象可得,x>2时,(kx+b)<0,(mx+n)>0,则(kx+b)(mx+n)<0,故A错误;当0<x<2时,kx+b<0,mx+n<0,(kx+b)(mx+n)>0,但是没有包含所有使得(kx+b)(mx+n)>0的解集,故B错误;时,kx+b<0,mx+n<0,故(kx+b)(mx+n)>0,且除此范围之外都不能使得(kx+b)(mx+n)>0,故C正确;x0.5时,y=kx+b>0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,则(kx+b)(mx+n)<0,故D错误;故选:C【点睛】本题考查了利用函数图象来解一元一次不等式,数形结合是解答本题的关键.5、A【解析】【分析】利用一次函数yx的增大而减小,可得,即可求解.【详解】∵当x1<x2时,y1>y2∴一次函数y=(k)x+2的yx的增大而减小k的值可能是0故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,解题关键是利用一次函数图象上点的坐标特征,求出6、D【解析】【详解】解:A、对于的每一个确定的值,都有唯一确定的值与其对应,所以的函数,此项不符题意;B、对于的每一个确定的值,都有唯一确定的值与其对应,所以的函数,此项不符题意;C、对于的每一个确定的值,都有唯一确定的值与其对应,所以的函数,此项不符题意;D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;故选:D.【点睛】本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,的函数)是解题关键.7、B【解析】【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】解:∵点Pm+3,2m+4)在x轴上,∴2m+4=0,解得:m=-2,m+3=-2+3=1,∴点P的坐标为(1,0).故选:B【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.8、D【解析】【分析】由题意直接依据分母不等于0进行分析计算即可.【详解】解:由题意可得所以自变量x的取值范围是全体实数.故选:D.【点睛】本题考查求函数自变量x的取值范围以及分式有意义的条件,注意掌握分式有意义的条件即分母不等于0是解题的关键.9、D【解析】【分析】先求出点B的坐标,然后运用待定系数法就可求出一次函数的表达式.【详解】解:由图可知:A(0,3),xB=1.∵点B在直线y=2x上,yB=2×1=2,∴点B的坐标为(1,2),设直线AB的解析式为y=kx+b则有:解得:∴直线AB的解析式为y=-x+3;故选:D.【点睛】本题主要考查了直线图象上点的坐标特征、用待定系数法求一次函数的解析式等知识,根据题意确定直线上两点的坐标是关键.10、C【解析】【分析】由题意易得k<0,然后根据一次函数图象与性质可进行排除选项.【详解】解:∵正比例函数ykxk≠0)函数值随x的增大而减小,k<0,∴-k>0,∴一次函数ykxk的图象经过一、二、四象限;故选:C.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.二、填空题1、-4【解析】【分析】轴上点的坐标,横坐标为,可知,进而得到的值.【详解】解:轴上故答案为:【点睛】本题考察了坐标轴上点坐标的特征.解题的关键在于理解轴上点坐标的形式.在轴上点的坐标,横坐标为;在轴上点的坐标,纵坐标为2、(答案不唯一)【解析】【分析】y关于x的一次函数,设,把代入求出,得出函数表达式即可.【详解】y关于x的一次函数,yx的增大而增大,y关于x的一次函数为代入得:这个函数表达式可以为故答案为:(答案不唯一).【点睛】本题考查一次函数的性质,掌握一次函数的相关性质是解题的关键.3、(﹣3,1)【解析】【分析】点关于y轴的对称点坐标,横坐标为相反数,纵坐标不变;可以得到对称点Q的坐标.【详解】解:点P(3,1)关于y轴的对称点Q的坐标为(﹣3,1).故答案为:(﹣3,1).【点睛】本题考察坐标系中点的对称.解题的关键在于明确点在对称时坐标的变化形式.4、(﹣,0)【解析】【分析】先根据一次函数解析式求出B1点的坐标,再根据B1点的坐标求出OA2的长,用同样的方法得出OA3OA4的长,以此类推,总结规律便可求出点A2021的坐标.【详解】解:∵点A1坐标为(﹣3,0),OA1=3,y=﹣x中,当x=﹣3时,y=4,即B1点的坐标为(﹣3,4),∴由勾股定理可得OB1=5,即OA2=5=3×同理可得,OB2,即OA3=5×(1OB3,即OA4=5×(2以此类推,OAn=5×(n2即点An坐标为(﹣,0),n=2021时,点A2021坐标为(﹣,0),故答案为:(﹣,0).【点睛】本题考查一次函数图象上点的坐标特征、勾股定理等知识,是重要考点,难度一般,解题注意,直线上任意一点的坐标都满足函数关系式y=﹣x5、          【解析】【分析】根据轴上的点,纵坐标为0,求出m值即可.【详解】解:∵点轴上,解得,的坐标为(-2,0);故答案为:-3,(-2,0).【点睛】本题考查了坐标轴上点的坐标特征,解题关键是明确轴上的点,纵坐标为0.三、解答题1、 (1)的面积为12;(2) D点的坐标为;(3) AE两点之间的距离为【解析】【分析】(1)利用完全平方式和绝对值的性质求出ab,然后确定AB两点坐标,从而利用三角形面积公式求解即可;(2)根据题意判断出,从而得到CB= AD,然后利用勾股定理求出CB,即可求出结论;(3)首先根据已知推出 ,得到∠DBC=∠EAC=120°,进一步推出 ,从而确定随着D点的运动,点E在过点A且平行于BC的直线PQ上运动,再根据点到直线的最短距离为垂线段的长度,确定OE最短时,各点的位置关系,最后根据含30°角的直角三角形的性质求解即可.【详解】解: (1) :∵由非负性可知:解得: A(3,0), B(-3,0), AB=3-(-3)=6,C(0,4),OC=4,(2)由(1)知A(3,0), B(-3,0),OA=OBOCAB∠AOC=∠BOC=90°,△AOC△BOC中,∠CBO=∠CAO∠CDA=∠CDE +∠ADE=∠BCD+∠CBA∠CBA=∠CDE∠ADE=∠BCD△BCD△ADE中,CB= ADB(-3,0), C(0,4),OB=3,OC=4, AD=BC=5,A(3,0),D(-2,0);(3)由(2) 可知CB=CA∠CBA=60°,△ABC为等边三角形,∠BCA=60°, ∠DBC=120°,△CDE为等边三角形,CD=CE∠DCE=60°,∠DCE=∠DCB+∠BCE,∠BCA=∠BCE+∠ECA∠DCB=∠ECA△DCB△ECA中,△DCB≌△ECA( SAS)∠DBC=∠EAC= 120°,∠EAC+∠ACB= 120°+60°= 180°,即:随着D点的运动,点E在过点A且平行于BC的直线PQ上运动,∵要使得OE最短,∴如图所示,当OEPQ时,满足OE最短,此时∠OEA=90°,∠DBC=∠EAC=120°,∠CAB=60°,∠OAE=∠EAC-∠CAB=60°,∠AOE= 30°,A(3,0),OA=3, ∴当OE最短时,AE两点之间的距离为【点睛】本题考查坐标与图形,全等三角形的判定与性质,等腰三角形和等边三角形的判定与性质等,理解平面直角坐标系中点坐标的特征,掌握等腰或等边三角形的性质,熟练使全等三角形的判定与性质是解题关键.2、(1)线上零售水果的单价为每千克40元,线下批发的单价为每千克30元;(2)①;②线上零售量为到1000千克.【解析】【分析】(1)设线上零售水果的单价为每千克x元,线下批发的单价为每千克y元,根据题意列出二元一次方程组求解即可;(2)①由题意可得:线上零售m千克,则线下批发千克,利用销售数量、单价、销售总价的关系即可得;②当时,代入①结论求解即可得.【详解】解:(1)设线上零售水果的单价为每千克x元,线下批发的单价为每千克y元,由题意得:解得:线上零售水果的单价为每千克40元,线下批发的单价为每千克30元;(2)①由题意可得:线上零售m千克,则线下批发千克, 即函数关系式为:②由(1)可得:当时,解得:线上零售量为到1000千克.【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应的方程及函数解析式是解题关键.3、(1)每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;(2)①y=﹣80x+24000;②商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元【解析】【分析】(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,然后根据“销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元”列出方程组,然后求解即可;(2)①设购进A型电脑x台,这100台电脑的销售总利润为y元.根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【详解】解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,根据题意得,解得∴每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;(2)①设购进A型电脑x台,这100台电脑的销售总利润为y元,据题意得,y=160x+240(100﹣x),y=﹣80x+24000,②∵100﹣x≤2xx≥33y=﹣80x+24000,yx的增大而减小,x为正整数,∴当x=34时,y取最大值,则100﹣x=66,此时y=-80×34+24000=21280(元),即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.4、(1)3000;(2);(3)18或【解析】【分析】(1)根据一次函数图象,两人同时从家出发后的速度一致,根据张明的路程除以时间即可求得速度,根据题意,即可求得的值;(2)根据(1)中的值代入函数解析式,求得,根据图象求得,根据题意求得当时,的值即可求解;(3)分两种情况讨论,①当张明的爸爸返回时,张明继续跑,和张明返回时,②根据(2)的结论令,解方程即可求解【详解】解:(1)米每分钟根据题意张明继续前行,5分钟后也原路返回,故答案为:(2)设代入,将点代入解得根据题意时,(米)故答案为:1500;(3)①当张明的爸爸返回时,张明继续跑,和张明返回时,设两人从家出发,至20分钟返回时的解析式为,将代入,即解得解得②两人都返回时,则解得第30分钟时,两人相距900米故答案为:18或30【点睛】本题考查了一次函数的应用,根据函数图象获取信息是解题的关键.5、 (1)见解析;(2)两个变量是:传播的速度和温度,温度是自变量;(3) 352米/秒; (4) y=331+x【解析】【分析】(1)根据题中数据列出表格.(2)找出题中的两个变量.(3)根据传播速度与温度的变化规律进而得出答案.(4)结合(3)中发现得出两个变量之间的关系.【详解】(1)列表如下:x(℃)051015202530y(米/秒)331334337340343346349 (2)两个变量是:传播的速度和温度,温度是自变量.(3) 根据表格中音速y(米/秒)随着气温x(℃)的变化规律可知,当气温再增加5℃,音速就相应增加3米/秒,即为349+3=352(米/秒),当气温是35℃时,估计音速y可能是:352米/秒.(4)根据表格中数据可得出:温度每升高5℃,传播的速度增加3,当x=0时,y=331,故两个变量之间的关系为: y=331+x【点睛】本题考查了变量与常量以及函数表示方法,理解两个变量的变化规律是得出函数关系式的关键. 

    相关试卷

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试随堂练习题:

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试随堂练习题,共24页。试卷主要包含了已知点A等内容,欢迎下载使用。

    北京课改版八年级下册第十四章 一次函数综合与测试一课一练:

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试一课一练,共23页。试卷主要包含了如图,过点A,点A个单位长度.,已知点P等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂达标检测题:

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂达标检测题,共23页。试卷主要包含了变量,有如下关系等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map