|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年最新精品解析京改版八年级数学下册第十四章一次函数综合练习试卷(含答案详解)
    立即下载
    加入资料篮
    2022年最新精品解析京改版八年级数学下册第十四章一次函数综合练习试卷(含答案详解)01
    2022年最新精品解析京改版八年级数学下册第十四章一次函数综合练习试卷(含答案详解)02
    2022年最新精品解析京改版八年级数学下册第十四章一次函数综合练习试卷(含答案详解)03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后作业题

    展开
    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后作业题,共27页。试卷主要包含了一次函数的一般形式是,下面哪个点不在函数的图像上.,,两地相距80km,甲等内容,欢迎下载使用。

    京改版八年级数学下册第十四章一次函数综合练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是(  )
    A. B.
    C. D.
    2、在平面直角坐标系中,已知点P(5,−5),则点P在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    3、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是(  )
    A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)
    4、一次函数的一般形式是(k,b是常数)( )
    A.y=kx+b B.y=kx C.y=kx+b(k≠0) D.y=x
    5、一次函数y=kx-m,y随x的增大而增大,且km<0,则在坐标系中它的大致图象是( )
    A. B.
    C. D.
    6、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )

    A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)
    7、甲、乙两名运动员在笔直的公路上进行自行车训练,行驶路程S(千米)与行驶时间t(小时)之间的关系如图所示,下列四种说法:①甲的速度为40千米/时;②乙的速度始终为50千米/时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,t =0.5或t =2或t =4,其中正确的是( )

    A.①③ B.①④ C.①②③ D.①③④
    8、下面哪个点不在函数的图像上( ).
    A.(-2,3) B.(0,-1) C.(1,-3) D.(-1,-1)
    9、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )

    A.乙比甲提前出发1h B.甲行驶的速度为40km/h
    C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
    10、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )
    A.-3 B.-1 C.2 D.4
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx>﹣x+3的解集是______.

    2、已知直线y=ax﹣1与直线y=2x+1平行,则直线y=ax﹣1不经过第 ___象限.
    3、如图①,在直角梯形ABCD中,动点P从点B出发,沿BC、CD运动至点D停止,设点P运动的路程为x,△ABP的面积为y.若y关于x的函数图象如图②所示,则△BCD的面积是______.

    4、一次函数y=kx+b(k≠0)的图象是____,它可以看作由直线y=kx(k≠0)平移|b|个单位而得到(当b>0时,向____平移,当b<0时,向____平移).
    5、一次函数y=kx+b(k≠0)中两个变量x、y的部分对应值如下表所示:
    x

    -2
    -1
    0
    1
    2

    y

    8
    5
    2
    -1
    -4


    那么关于x的不等式kx+b≥-1的解集是________.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.

    (1)求证:△AOB≌△COD;
    (2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
    (3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
    2、甲、乙两人在某天不约而同的进行一次徒步活动,已知A、B两地相距10千米,甲先出发,从A地匀速步行到B地,乙晚出发半小时,从B地出发匀速步行到A地.两人相向而行.图中l1、l2分别表示两人离B地的距离y(千米)与时间x(小时)的关系.根据图象解答下列问题:
    (1)求y甲、y乙关于x的函数表达式;
    (2)在甲出发_______小时后,甲、乙相遇;相遇时离B地_______千米;
    (3)甲出发_______小时后,甲、乙两人相距5千米.

    3、汽车在发动后的前10秒内以匀加速a=0.8m/s2行驶,这10s内,经过t(s)汽车行驶的路程为s=at2.
    (1)求t=2.5s和3.5s时,汽车所行驶的路程.
    (2)汽车在发动后行驶10m,15m所需的时间各为多少? (精确到0.1)
    4、综合与探究:
    如图1,平面直角坐标系中,一次函数y=x+3图象分别交x轴、y轴于点A,B,一次函数y=﹣x+b的图象经过点B,并与x轴交于点C点P是直线AB上的一个动点.
    (1)求A,B两点的坐标;
    (2)求直线BC的表达式,并直接写出点C的坐标;
    (3)请从A,B两题中任选一题作答.我选择    题.
    A.试探究直线AB上是否存在点P,使以A,C,P为顶点的三角形的面积为18?若存在,求出点P的坐标;若不存在,说明理由;
    B.如图2,过点P作x轴的垂线,交直线BC于点Q,垂足为点H.试探究直线AB上是否存在点P,使PQ=BC?若存在,求出点P的坐标;若不存在,说明理由.

    5、如图,在平面直角坐标系中,点A为y轴正半轴上一点,点B为x轴负半轴上一点,点C为x轴正半轴上一点,OA=OB=m,OC=n,满足m2﹣12m+36+(n﹣2)2=0,作BD⊥AC于D,BD交OA于E.
    (1)如图1,求点B、C的坐标;
    (2)如图2,动点P从B点出发,以每秒2个单位的速度沿x轴向右运动,设点P运动的时间为t,△PEC的面积为S,请用含t的式子表示S,并直接写出t的取值范围;
    (3)如图3,在(2)的条件下,当t=6时,在坐标平面内是否存在点F,使△PEF是以PE为底边的等腰直角三角形,若存在,求出点F的坐标,若不存在,请说明理由.


    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤、<x≤、<x≤2三段求出函数关系式,进而得到当x=时,y=80,结合函数图象即可求解.
    【详解】
    解:当两车相遇时,所用时间为120÷(60+90)=小时,
    B车到达甲地时间为120÷90=小时,
    A车到达乙地时间为120÷60=2小时,
    ∴当0≤x≤时,y=120-60x-90x=-150x+120;
    当<x≤时,y=60(x-)+90(x-)=150x-120;
    当<x≤2是,y=60x;
    由函数解析式的当x=时,y=150×-120=80.
    故选:C
    【点睛】
    本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.
    2、D
    【解析】
    【分析】
    根据各象限内点的坐标特征解答即可.
    【详解】
    解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.
    故选:D.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    3、A
    【解析】
    【分析】
    根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.
    【详解】
    解:∵轴,且,点B在第二象限,
    ∴点B一定在点A的左侧,且两个点纵坐标相同,
    ∴,即,
    故选:A.
    【点睛】
    题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.
    4、C
    【解析】
    【分析】
    根据一次函数的概念填写即可.
    【详解】
    解:把形如y=kx+b((k,b是常数,k≠0)的函数,叫做一次函数,
    故选:C.
    【点睛】
    本题考查了一次函数的概念,做题的关键是注意k≠0.
    5、B
    【解析】
    【分析】
    根据一次函数的性质以及有理数乘法的性质,求得、的符号,即可求解.
    【详解】
    解:一次函数y=kx-m,y随x的增大而增大,可得,
    ,可得,
    则一次函数y=kx-m,经过一、三、四象限,
    故选:B
    【点睛】
    本题考查的是一次函数的图象与系数的关系,涉及了一次函数的增减性,有理数乘法的性质,解题的关键是掌握一次函数的有关性质以及有理数乘法的性质,正确判断出、的符号.
    6、B
    【解析】
    【分析】
    观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.
    【详解】
    解:点的运动规律是每运动四次向右平移四个单位,

    动点第2021次运动时向右个单位,
    点此时坐标为,
    故选:B.
    【点睛】
    本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.
    7、D
    【解析】
    【分析】
    分析图像上每一段表示的实际意义,再根据行程问题计算即可.
    【详解】
    ①甲的速度为,故正确;
    ②时,已的速度为,后,乙的速度为,故错误;
    ③行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确;
    ④由①②③得:甲的函数表达式为:,
    已的函数表达为:时,,时,,
    时,甲、乙两名运动员相距,
    时,甲、乙两名运动员相距,
    时,甲、乙两名运动员相距为,故正确.
    故选:D.
    【点睛】
    本题为一次函数应用题,此类问题主要通过图象计算速度,即分析每一段表示的实际意义进而求解.
    8、D
    【解析】
    【分析】
    将A,B,C,D选项中的点的坐标分别代入,根据图象上点的坐标性质即可得出答案.
    【详解】
    解:A.将(-2,3)代入,当x=-2时,y=3,此点在图象上,故此选项不符合题意;
    B.将(0,-1)代入,当x=0时,y=-1,此点在图象上,故此选项不符合题意;
    C.将(1,-3)代入,当x=1时,y=-3,此点在图象上,故此选项不符合题意;
    D.将(-1,-1)代入,当x=-1时,y=1,此点不在图象上,故此选项符合题意.
    故选:D.
    【点睛】
    本题考查了一次函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式,反之,只要满足函数解析式就一定在函数的图象上.
    9、C
    【解析】
    【分析】
    根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
    【详解】
    解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
    B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
    C、乙行驶的速度为
    ∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
    D、;

    ∴0.75h或1.125h时,乙比甲多行驶10km,
    ∴选项D说法正确,不符合题意.
    故选C.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
    10、B
    【解析】
    【分析】
    先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.
    【详解】
    解:根据题意,
    ∵y1>y2,
    ∴,
    解得:,
    ∴,
    ∴;,
    ∵当x<1时,y1>y2,

    ∴,
    ∴;
    ∴k的值可以是-1;
    故选:B.
    【点睛】
    本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.
    二、填空题
    1、x>1
    【解析】
    【分析】
    利用函数与不等式的关系,找到正比例函数高于一次函数图像的那部分对应的自变量取值范围,即可求出解集.
    【详解】
    解:由图可知:不等式kx>﹣x+3,正比例函数图像在一次函数上方的部分,对应的自变量取值为x>1.
    故此不等式的解集为x>1.
    故答案为:x>1.
    【点睛】
    本题主要是考查了一次函数与不等式,熟练地应用函数图像求解不等式的解集,培养数形结合的能力,是解决该类问题的要求.
    2、二
    【解析】
    【分析】
    根据两直线平行一次项系数相等,求出a,即可判断y=ax﹣1经过的象限.
    【详解】
    解:∵直线y=ax﹣1与直线y=2x+1平行,
    ∴ a=2,
    ∴直线y=ax﹣1的解析式为y=2x﹣1
    ∴直线y=2x﹣1 ,经过一、三、四象限,不经过第二象限;
    故答案为:二.
    【点睛】
    本题考查了一次函数图象的性质与系数之间的关系,两直线平行一次项系数相等是解题的关键.
    3、3
    【解析】
    【分析】
    由图2可知,当到P与C重合时最大,△ABP的面积最大,此时可求得BC=2;然后可知当P在CD上移动时面积不变,可知CD=5-2=3,因此可求△BCD的面积.
    【详解】
    解:动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则△ABP面积y在BC段随x的增大而增大;
    在CD段,△ABP的底边不变,高不变,因而面积y不变化.由图2可以得到:BC=2,CD=3,△BCD的面积是×2×3=3.
    故答案为:3.
    【点睛】
    本题考查了动点问题的函数图象,理解问题,弄清题意,能够通过图象知道随自变量的增大,函数值是增大还是减小是解题的关键.
    4、 一条直线 上 下
    【解析】
    【分析】
    根据一次函数的性质填写即可.
    【详解】
    解:∵函数为一次函数,
    ∴一次函数y=kx+b(k≠0)的图象是一条直线,它可以看作由直线y=kx(k≠0)平移|b|个单位而得到(当b>0时,向上平移,当b<0时,向下平移).
    故答案为:①一条直线 ②上 ③下.
    【点睛】
    本题考查了一次函数的性质,做题的关键是牢记性质准确填写.
    5、x≤1
    【解析】
    【分析】
    由表格得到函数的增减性后,再得出时,对应的的值即可.
    【详解】
    解:当时,,
    根据表可以知道函数值y随的增大而减小,
    ∴不等式的解集是.
    故答案为:.
    【点睛】
    此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系,理解一次函数的增减性是解决本题的关键.
    三、解答题
    1、(1)见解析;(2)见解析;(3)见解析
    【解析】
    【分析】
    (1)根据SAS即可证明△AOB≅△COD;
    (2)过点作CH∥x轴,交BD于点H,得出AB∥CH∥OD,由平行线的性质得∠BAP=∠HCP,由轴得∠DCH=∠ODC=90°,由△AOB≅△COD得OB=OD,故可得∠ODB=45°,从而得出∠CHD=∠CDH=45°,推出CH=CD=AB,根据AAS证明△ABP≅△CHP,得出AP=CP即可得证;
    (3)延长EG到,使GM=GE,连接AM,OM,延长EF交于点J,根据SAS证明△AGM≅△FGE,得出AM=EF,∠AMG=∠GEF,故AM∥EJ,由平行线的性质得出∠MAO=∠AJE,进而推出∠MAO=∠ECO,根据SAS证明△MAO≅△ECO,故OM=OE,∠AOM=∠EOC,即可证明∠OEG=45°.
    【详解】
    (1)∵AB⊥y轴于点,轴于点,
    ∴∠ABO=∠CDO=90°,
    ∵A(-2,6),C(6,2),
    ∴AB=CD=2,OB=OD=6,
    ∴△AOB≅△COD(SAS);
    (2)


    如图2,过点作CH∥x轴,交BD于点H,
    ∴AB∥CH∥OD,
    ∴∠BAP=∠HCP,
    ∵CD⊥x轴,
    ∴∠DCH=∠ODC=90°,
    ∵△AOB≅△COD,
    ∴OB=OD,
    ∴∠ODB=45°,∠CHD=∠ODB=45°,∠CDH=90°-45°=45°,
    ∴CH=CD=AB,
    在△ABP与△CHP中,
    ∠APB=∠CPH∠BAP=∠HCPAB=CH,
    ∴△ABP≅△CHP(AAS),
    ∴AP=CP,即点为AC中点;
    (3)


    如图3,延长EG到,使GM=GE,连接AM,OM,延长EF交于点J,
    ∵AG=GF,∠AGE=∠FGE,GM=GE,
    ∴△AGM≅△FGE(SAS),
    ∴AM=EF,∠AMG=∠GEF,
    ∴AM∥EJ,
    ∴∠MAO=∠AJE,
    ∵EF=EC,
    ∴AM=EC,
    ∵∠AOC=∠CEJ=90°,
    ∴∠AJE+∠EJO=180°,∠EJO+ECO=180°,
    ∴∠AJE=∠ECO,
    ∴∠MAO=∠ECO,
    ∵AO=CO,
    ∴△MAO≅△ECO(SAS),
    OM=OE,∠AOM=∠EOC,
    ∴∠MOE=∠AOC=90°,
    ∴∠MEO=45°,即∠OEG=45°.
    【点睛】
    本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
    2、(1)y甲=-5x+10,y乙=4x-2;(2)相遇时甲离B地为km;(3)或.
    【解析】
    【分析】
    (1)找出直线l1、l2经过的两点坐标,两用待定系数法求出直线解析式即可;
    (2)联立方程组,求出方程组的解即可;
    (3)分相遇前和相遇后相距5千米列出方程求解即可.
    【详解】
    解:(1)设直线l1的解析式为
    ∵直线l1过点(2,0),(0,10)
    ∴代入解析式得,
    解得,
    ∴直线l1的解析式为
    设直线l2的解析式为
    ∵直线l2过点(0.5,0),(3,10)
    ∴代入解析式得,
    解得,
    ∴直线l2的解析式为.
    (2)由图象可知甲速度为10÷2=5km/h,乙速度为10÷(3-0.5)=4km/h,
    设甲出发后x小时相遇,则乙行驶(x-0.5)小时,根据题意得
    4(x-0.5)+5x=10,
    解得x=.
    当x=时,y甲=-5×+10=,
    ∴相遇时甲离B地为km.
    故答案为:,
    (3)由题意知:①或②
    解得,或
    所以,甲出发或小时后,甲、乙两人相距5千米.
    故答案为:或.
    【点睛】
    本题主要考查了一次函数的应用问题,在解题时要根据图形列出方程是解题的关键.
    3、(1)2.5,4.9;(2)5,6.1
    【解析】
    【分析】
    (1)根据公式,得函数解析式,根据自变量的值,得函数值.
    (2)根据函数值,得相应的自变量的值.
    【详解】
    (1)∵s=at2,
    ∴s=×0.8t2=25t2.
    当t=2.5时,s=25×2.52=2.5(m),
    当t=3.5时,s=25×3.52=4.9(m).
    (2)当s=10时, 25t2=10,解得t=5(s),
    当s=15时, 25t2=15,解得t≈6.1(s).
    【点睛】
    本题考查了函数值,利用了函数的自变量与函数值的对应关系.
    4、(1)(﹣6,0),(0,3);(2)y=﹣x+3,(3,0);(3)选A,存在,点P的坐标为(2,4)或(﹣14,﹣4);选B,存在,点P的坐标为(2,+3)或(﹣2,﹣+3).
    【解析】
    【分析】
    (1)根据坐标轴上点的坐标特征求A点和B点坐标;
    (2)将B点坐标(0,3)代入一次函数y=−x+b即可求解;
    (3)A.过点P作PH⊥x轴于H,设点P(x,x+3),则PH=,根据S△ACP=AC•PH=18可得PH的值,即可求解.
    B.过点P作x轴的垂线,交直线BC于点Q,垂足为点H.设点P(x,x+3),则Q(x,−x+3),根据PQ=BC列方程求解即可.
    【详解】
    解:(1)当y=0时,x+3=0,解得x=﹣6,则A点坐标为(﹣6,0);
    当x=0时,y=x+3=3,则B点坐标为(0,3);
    (2)将B点坐标(0,3)代入一次函数y=﹣x+b得:b=3,
    ∴直线BC的表达式为y=﹣x+3,
    当y=0时,﹣x+3=0,解得x=3,则C点坐标为(3,0);
    (3)A.过点P作PH⊥x轴于H,

    设点P(x,x+3),
    ∴PH=,
    ∵A点坐标为(﹣6,0),C点坐标(3,0),
    ∴AC=9,
    ∵S△ACP=AC•PH=×9•PH=18,
    ∴PH=4,
    ∴x+3=±4,
    当x+3=4时,x=2;当x+3=﹣4时,x=﹣14,
    ∴存在,点P的坐标为(2,4)或(﹣14,﹣4);
    B.如图,过点P作x轴的垂线,交直线BC于点Q,垂足为点H.

    设点P(x,x+3),则Q(x,﹣x+3),
    ∴PQ=,
    ∵B点坐标(0,3),C点坐标(3,0),
    ∴OB=OC=3,
    ∴BC=,
    ∵PQ=BC,
    ∴,解得:x=或﹣,
    ∴存在,点P的坐标为(2,+3)或(﹣2,﹣+3).
    【点睛】
    此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积,勾股定理,待定系数法,用方程的思想解决问题是解本题的关键.
    5、(1)B(-6,0),C(2,0);(2)S=8-2t(0≤t<4),S=2t-8(t>4);(3)存在,F(4,4)或F(2,-2)
    【解析】
    【分析】
    (1)根据平方的非负性,求得,即可求解;
    (2)根据△OAC≌△OBE求得,分段讨论,分别求解即可;
    (3)分两种情况讨论,当在的上方或在的下方,分别求解即可.
    【详解】
    解:(1)∵
    ∴∵,
    ∴m-6=0,n-2=0
    ∴m=6,n=2
    ∴B(-6,0),C(2,0)
    (2)∵BD⊥AC,AO⊥BC ∠BDC=∠BDA=90°,∠AOB=∠AOC=90°
    ∴∠OAC+∠OCA=90°,∠OBE+∠OCA=90°
    ∴∠OAC=∠OBE
    ∴△OAC≌△OBE(AAS)
    ∴OC=OE=2


    ①当0≤t<4时,BP=2t,PC=8-2t,S=PC×OE=(8-2t)×2=8-2t;
    ②当t>4时,BP=2t,PC=2t-8,S=PC×OE=(2t-8)×2=2t-8;
    (3)当t=6时,BP=12
    ∴OB=OP=6
    ①当F在EP上方时,作FM⊥y轴于M,FN⊥x轴于N
    ∴∠FME=∠FNP=90°
    ∵∠MFN=∠EFP=90°
    ∴∠MFE=∠NFP∵FE=FP

    ∴ME=NP,FM=FN
    ∴MO=ON
    ∴2+EM=6-NP
    ∴ON=4
    ∴F(4,4)
    ②当F在EP下方时,作FG⊥y轴于G,FH⊥x轴于H
    ∴∠FGE=∠FHP=90°
    ∵∠GFH=∠EFP=90°
    ∴∠GFE=∠HFP
    ∵FE=FP

    ∴FG=FH, GE=HP
    ∴HF=OG,FG=OH
    ∴2+OG=6-OH
    ∴OG=OH=2
    ∴F(2,-2)


    【点睛】
    此题考查了坐标与图形,涉及了全等三角形的判定与性质,平分的性质,等腰三角形的性质,一次函数的性质,解题的关键是掌握并灵活运用相关性质进行求解.

    相关试卷

    北京课改版八年级下册第十四章 一次函数综合与测试课后测评: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试课后测评,共26页。

    北京课改版八年级下册第十四章 一次函数综合与测试同步测试题: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试同步测试题,共24页。试卷主要包含了已知一次函数y=ax+b,若一次函数y=kx+b,正比例函数y=kx的图象经过一等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试课时作业: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课时作业,共25页。试卷主要包含了已知点,若直线y=kx+b经过第一等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map