北京课改版八年级下册第十四章 一次函数综合与测试同步测试题
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,过点A(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是( )
A.y=2x+3B.y=x﹣3C.y=x+3D.y=3﹣x
2、在函数y=中,自变量x的取值范围是 ( )
A.x>3B.x≥3C.x>4D.x≥3且x≠4
3、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是( ).
A.-2B.2
C.4D.﹣4
4、在△ABC中,AB=AC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是( )
A.(0,2)B.(0,0)C.(2,﹣2)D.(﹣2,2)
5、已知一次函数y=ax+b(a≠0)的图象经过点(0,1)和(1,3),则b﹣a的值为( )
A.﹣1B.0C.1D.2
6、若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过A(0,﹣1),B(1,1),则不等式kx+b﹣1<0的解集为( )
A.x<0B.x>0C.x>1D.x<1
7、正比例函数y=kx的图象经过一、三象限,则一次函数y=﹣kx+k的图象大致是( )
A.B.
C.D.
8、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )
A.(2020,﹣2)B.(2020,1)C.(2021,1)D.(2021,﹣2)
9、
10、正比例函数y=mx的图象经过点(-1,2),那么这个函数的解析式为( )
A.y=xB.y=xC.y=2xD.y=-2x
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、将函数y=3x-4 的图像向上平移5个单位长度,所得图像对应的函数表达式为_______.
2、如果直线与直线的交点在第二象限,那么b的取值范围是______.
3、(1)由于任何一元一次方程都可转化为____(k,b为常数,k≠0)的形式.所以解一元一次方程可以转化为当一次函数y=kx+b(k≠0)的值为_____时,求相应的_____的值.
(2)一元一次方程kx+b=0的解,是直线y=kx+b与____轴交点的____坐标值.
4、已知一次函数的图象与两坐标轴围成的三角形面积为4,则______.
5、一个用电器的电阻是可调节的,其调节范围为:110~220Ω.已知电压为220ᴠ,这个用电器的功率P的范围是:___________ w.(P表示功率,R表示电阻,U表示电压,三者关系式为:P·R=U²)
三、解答题(5小题,每小题10分,共计50分)
1、某经销商用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.
(1)求一件A,B型商品的进价分别为多少元?
(2)若该经销商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,设购进A型商品m件,求该经销商销售这批商品的利润p与m之间的函数关系式,并写出m的取值范围;
(3)在(2)的条件下,该经销商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该经销商售完所有商品并捐献慈善资金后获得的最大收益.
2、一次函数的图像过,两点.
(1)求函数的关系式;
(2)画出该函数的图像;
(3)由图像观察:当x 时,y>0;当x 时,y<0;当时,y的取值范围是 .
3、利用函数图象解方程组.
4、如图,在平面直角坐标系中,点为坐标原点,点,点在轴的负半轴上,点,连接、,且,
(1)求的度数;
(2)点从点出发沿射线以每秒2个单位长度的速度运动,同时,点从点出发沿射线以每秒1个单位长度的速度运动,连接、,设的面积为,点运动的时间为,求用表示的代数式(直接写出的取值范围);
(3)在(2)的条件下,当点在轴的正半轴上,点在轴的负半轴上时,连接、、,,且四边形的面积为25,求的长.
5、为了抗击新冠疫情,全国人民众志成城,守望相助.某地一水果购销商安排15辆汽车装运,,这3种水果共120吨进行销售,所得利润全部捐给国家抗疫.已知15辆汽车都要装满,且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆.汽车对不同水果的运载量和销售每吨水果获利情况如下表所示:
(1)设装运种水果的车辆数为辆,装运种水果的车辆数为辆
①求与之间的函数关系式;
②设计车辆的安排方案,并写出每种安排方案.
(2)若原有获利不变的情况下,当地政府按每吨60元的标准实行运费补贴.该经销商打算将获利连同补贴全部捐出.问:哪种车辆安排方案可以使这次捐款数(元)最多?捐款数最多是多少?
-参考答案-
一、单选题
1、D
【解析】
【分析】
先求出点B的坐标,然后运用待定系数法就可求出一次函数的表达式.
【详解】
解:由图可知:A(0,3),xB=1.
∵点B在直线y=2x上,
∴yB=2×1=2,
∴点B的坐标为(1,2),
设直线AB的解析式为y=kx+b,
则有:,
解得:,
∴直线AB的解析式为y=-x+3;
故选:D.
【点睛】
本题主要考查了直线图象上点的坐标特征、用待定系数法求一次函数的解析式等知识,根据题意确定直线上两点的坐标是关键.
2、D
【解析】
【分析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.
【详解】
解:∵x-3≥0,
∴x≥3,
∵x-4≠0,
∴x≠4,
综上,x≥3且x≠4,
故选:D.
【点睛】
主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.
3、B
【解析】
【分析】
当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.
【详解】
解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,
②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,
∵|k|越大,它的图象离y轴越近,
∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.
故选:B.
【点睛】
本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.
4、A
【解析】
【分析】
由题意可知BO=CO,又AB=AC,得点A在y轴上,即可求解.
【详解】
解:由题意可知BO=CO,
∵又AB=AC,
∴AO⊥BC,
∴点A在y轴上,
∴选项A符合题意,
B选项三点共线,不能构成三角形,不符合题意;
选项C、D都不在y轴上,不符合题意;
故选:A.
【点睛】
本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.
5、A
【解析】
【分析】
用待定系数法求出函数解析式,即可求出a和b的值,进而可求出代数式的值.
【详解】
解:把点(0,1)和(1,3)代入y=ax+b,得:,
解得,
∴b﹣a=1﹣2=﹣1.
故选:A.
【点睛】
本题主要考查待定系数法求一次函数解析式,了解一次函数图象上点的坐标代入函数解析式是解题关键.
6、D
【解析】
【分析】
利用函数的增减性和x=1时的函数图像上点的位置来判断即可.
【详解】
解:如图所示:k>0,函数y= kx+b随x的增大而增大,直线过点B(1,1),
∵当x=1时,kx+b=1,即kx+b-1=0,
∴不等式kx+b﹣1<0的解集为:x<1.
故选择:D.
【点睛】
此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.
7、A
【解析】
【分析】
由正比例函数的图象经过一、三象限,可以知道,由此,从而得到一次函数图象情况.
【详解】
解:∵正比例函数y=kx的图象经过一、三象限
∴
∴
∴一次函数的图象经过一、二、四象限
故选:A
【点睛】
本题考查一次函数图象,熟记相关知识点并能灵活应用是解题关键.
8、B
【解析】
【分析】
观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.
【详解】
解:点的运动规律是每运动四次向右平移四个单位,
,
动点第2021次运动时向右个单位,
点此时坐标为,
故选:B.
【点睛】
本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.
9、C
【解析】
【分析】
根据第三象限内点的坐标横纵坐标都为负的直接可以判断
【详解】
解:在平面直角坐标系中,点P(﹣2,﹣3)在第三象限
故选C
【点睛】
本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.
10、D
【解析】
【分析】
把点(-1,2)代入正比例函数y=mx即可求解.
【详解】
解:∵正比例函数y=mx的图象经过点(-1,2),
∴-m=2,
∴m=-2,
∴这个函数解析式为y=-2x.
故选:D
【点睛】
本题考查了待定系数法求正比例函数解析式,理解待定系数法,把点的坐标代入函数解析式是解题关键.
二、填空题
1、##y=1+3x
【解析】
【分析】
直接利用一次函数平移规律“上加下减”求解即可.
【详解】
解:∵将一次函数的图象向上平移5个单位长度,
∴平移后所得图象对应的函数关系式为:,
故答案为:.
【点睛】
此题主要考查了一次函数图象的平移,熟练记忆函数平移规律是解题关键.
2、b<
【解析】
【分析】
联立两直线解析式求出交点坐标,再根据交点在第二象限列出不等式组求解即可.
【详解】
解:联立,
解得 ,
∵交点在第二象限,
∴,
解不等式①得:,
解不等式②得:,
∴的取值范围是.
故答案为:.
【点睛】
本题考查了两直线相交的问题,解一元一次不等式组,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活运用.
3、 kx+b=0 0 自变量 x 横
【解析】
【分析】
(1)根据一次函数与x轴交点横坐标与一元一次方程的关系解答;
(2)根据一次函数与x轴交点横坐标与一元一次方程的关系解答;
【详解】
解:(1)由于任何一元一次方程都可转化为kx+b=0 (k,b为常数,k≠0)的形式.所以解一元一次方程可以转化为当一次函数y=kx+b(k≠0)的值为0时,求相应的自变量的值.
故答案为:kx+b=0,0,自变量;
(2)一元一次方程kx+b=0的解,是直线y=kx+b与x轴交点的横坐标值.
故答案为:x,横.
【点睛】
本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b,确定它与x轴的交点的横坐标的值.
4、2或-2##-2或2
【解析】
【分析】
由函数解析式确定与x轴的交点坐标为,与y轴的交点坐标为(0,4),然后根据函数图象与坐标轴的面积为4列出方程求解即可.
【详解】
解:∵在中,
当时,;
当时,,
∴的图象与x轴的交点坐标为,与y轴的交点坐标为(0,4),
由题意可得:,
解得:.
故答案为:2或-2.
【点睛】
题目主要考查一次函数解析式的确定及其与坐标轴围成面积的计算方法,理解题意,得出方程是解题关键.
5、220≤P≤440
【解析】
【分析】
由题意根据题目所给的公式分析可知,电阻越大则功率越小,当电阻为110Ω时,功率最大,当电阻为220Ω时,功率最小,从而求出功率P的取值范围.
【详解】
解:三者关系式为:P·R=U²,可得,
把电阻的最小值R=110代入得,得到输出功率的最大值,
把电阻的最大值R=220代入得,得到输处功率的最小值,
即用电器输出功率P的取值范围是220≤P≤440.
故答案为:220≤P≤440.
【点睛】
本题考查一元一次不等式组与函数的应用,解答本题的关键是读懂题意,弄清楚公式的含义,代入数据,求出功率P的范围.
三、解答题
1、 (1)一件B型商品的进价为150元,则一件A型商品的进价为160元;
(2);
(3)当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元
【解析】
【分析】
(1)设一件B型商品的进价为x元,则一件A型商品的进价为元.根据16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,列出方程即可解决问题;
(2)根据总利润=两种商品的利润之和,列出式子即可解决问题;
(3)设利润为元.则,分三种情形讨论利用一次函数的性质即可解决问题.
(1)
解:设一件B型商品的进价为x元,则一件A型商品的进价为元,
由题意:,
解得,
经检验是分式方程的解,
∴,
答:一件B型商品的进价为150元,则一件A型商品的进价为160元;
(2)
解:∵客商购进A型商品m件,
∴客商购进B型商品件,
由题意:,
∵A型商品的件数不大于B型的件数,且不小于80件,
∵,
∴;
(3)
解:设收益为元,
则,
①当时,即时,w随m的增大而增大,
∴当时,最大收益为元;
②当,即时,最大收益为17500元;
③当时,即时,w随m的增大而减小,
∴时,最大收益为元,
∴当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元.
【点睛】
本题主要考查了分式方程的实际应用,一次函数的实际应用,,熟练掌握相关知识及寻找题目的等量关系列式求解是解决本题的关键.
2、(1);(2)见解析;(3)x<2;x>2;-2≤y≤4
【解析】
【分析】
(1)运用待定系数法求出函数关系式即可;
(2)根据“两点确定一条直线”画出直线即可;
(3)根据函数图象解答即可.
【详解】
解:(1)设经过A,B两点的直线解析式为y=kx+b,
把,两点坐标代入,得
k+b=23k+b=-2
解得,k=-2b=4
∴直线的解析式为;
(2)当x=0时,y=4,当y=0时,x=2,
∴直线经过(0,4),(2,0),
画图象如图所示,
(3)根据图象可得:
当x<2时,y>0;当x>2时,y<0;当时,-2≤y≤4
故答案为:x<2;x>2;-2≤y≤4
【点睛】
本题主要考查了运用待定系数法求一次函数解析式,画一次函数图象以及一次函数图象与性质,熟练掌握一次函数的图象与性质是解答本题的关键.
3、x=-1y=1.
【解析】
【分析】
直接利用两函数图象的交点横纵坐标即为x,y的值进而得出答案.
【详解】
解:方程组对应的两个一次函数为:y=-32x-12与y=2x+3,
画出这两条直线,如图所示:
由图像知两直线交点坐标为(-1,1).
所以原方程组的解为x=-1y=1.
【点睛】
此题主要考查了一次函数与二元一次方程组的解,正确利用数形结合分析是解题关键.
4、(1);(2);(3)5
【解析】
【分析】
(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;
(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;
(3)过点作,连接,根据四边形的面积求得,进而求得,由,设,,则,证明,进而可得,,进一步导角可得,根据等角对等边即可求得
【详解】
(1)
是等腰直角三角形,
(2)①当点在轴正半轴时,如图,
,,
,
②当点在原点时,都在轴上,不能构成三角形,则时,不存在
③当点在轴负半轴时,如图,
,,
,
综上所述:
(3)如图,过点作,连接
,
设,,则,
是等腰直角三角形
在和中
,
是等腰直角三角形
中,
,
又
【点睛】
本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键.
5、(1)①y=15-2x;②有四种方案:A、B、C三种的车辆数分别是:3辆、9辆、3辆;或4辆、7辆、4辆;或5辆、5辆、5辆;或6辆、3辆、6辆;(2)采用A、B、C三种的车辆数分别是:3辆、9辆、3辆;捐款数最多是134400元.
【解析】
【分析】
(1)①等量关系为:车辆数之和=15,由此可得出x与y的关系式;
②由题意,列出不等式组,求出x的取值范围,即可得到答案;
(2)总利润为:装运A种水果的车辆数×10×800+装运B种水果的车辆数×8×1200+装运C种水果的车辆数×6×1000+运费补贴,然后按x的取值来判定.
【详解】
解:(1)①设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,则装C种水果的车辆是(15-x-y)辆.
则10x+8y+6(15-x-y)=120,
即10x+8y+90-6x-6y=120,
则y=15-2x;
②根据题意得:
15-2x≥3x≥315-x-(15-2x)≥3,
解得:3≤x≤6.
则有四种方案:A、B、C三种的车辆数分别是:3辆、9辆、3辆;或4辆、7辆、4辆;或5辆、5辆、5辆;或6辆、3辆、6辆;
(2)w=10×800x+8×1200(15-2x)+6×1000[15-x-(15-2x)]+120×50
=-5200x+150000,
根据一次函数的性质,当x=3时,w有最大值,是-5200×3+150000=134400(元).
应采用A、B、C三种的车辆数分别是:3辆、9辆、3辆.
【点睛】
本题考查了一次函数的应用及不等式的应用,解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系,确定x的范围,得到装在的几种方案是解决本题的关键.
水果品种
汽车运载量(吨/辆)
10
8
6
水果获利(元/吨)
800
1200
1000
北京课改版八年级下册第十四章 一次函数综合与测试课后测评: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试课后测评,共26页。
初中数学北京课改版八年级下册第十四章 一次函数综合与测试课时作业: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课时作业,共25页。试卷主要包含了已知点,若直线y=kx+b经过第一等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题,共24页。试卷主要包含了函数的图象如下图所示,,两地相距80km,甲,已知一次函数y=ax+b等内容,欢迎下载使用。