初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后复习题
展开
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后复习题,共23页。试卷主要包含了点A个单位长度.,一次函数的一般形式是,变量,有如下关系,直线y=2x-1不经过的象限是等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,已知点P(5,−5),则点P在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2、已知点(﹣4,y1)、(2,y2)都在直线y=﹣x+b上,则y1和y2的大小关系是( )A.y1>y2 B.y1=y2 C.y1<y2 D.无法确定3、甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示,给出下列结论:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=800;④a=34,其中正确的结论个数为( )A.4个 B.3个 C.2个 D.1个4、自2021年9月16日起,合肥市出租车价格调整,调整后的价格如图所示,根据图中的数据,下列说法不正确的是( )A.出租车的起步价为10元 B.超过起步价以后,每公里加收2元C.小明乘坐2.8公里收费为10元 D.小丽乘坐10公里,收费25元5、点A(-3,1)到y轴的距离是( )个单位长度.A.-3 B.1 C.-1 D.36、一次函数的一般形式是(k,b是常数)( )A.y=kx+b B.y=kx C.y=kx+b(k≠0) D.y=x7、变量,有如下关系:①;②;③;④.其中是的函数的是( )A.①②③④ B.①②③ C.①② D.①8、直线y=2x-1不经过的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限9、在平面直角坐标系xOy中, 下列函数的图像过点(-1,1)的是( )A. B. C. D.10、如图,已知直线y=kx+b和y=mx+n交于点A(﹣2,3),与x轴分别交于点B(﹣1,0)、C(3,0),则方程组的解为( )A. B. C. D.无法确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果点P(m+3,2m﹣4)在y轴上,那么m的值是 _____.2、对于直线y=kx+b(k≠0):(1)当k>0,b>0时,直线经过第______象限;(2)当k>0,b<0时,直线经过第______象限;(3)当k<0,b>0时,直线经过第______象限;(4)当k<0,b<0时,直线经过第______象限.3、如图,已知直线:与直线:相交于点:,则关于x的不等式的解集为 _____.4、线段AB=5,AB平行于x轴,A在B左边,若A点坐标为(-1,3),则B点坐标为_____.5、已知一次函数的图象与两坐标轴围成的三角形面积为4,则______.三、解答题(5小题,每小题10分,共计50分)1、为响应政府号召,某地水果种植户借助电商平台,在线下批发的基础上同步在电商平台上零售水果.已知线上零售40千克,线下批发80千克水果共获得4000元;线上零售60千克和线下批发80千克水果销售额相同.(1)求线上零售和线下批发水果的单价分别为每千克多少元?(2)若该地区水果种植户张大叔某月线上零售和线下批发共销售水果2000千克,设线上零售m千克.获得的总销售额为w元.①求w与m之间的函数关系式;②若总销售额为70000元,则线上零售量为多少千克?2、如图,在平面直角坐标系中,直线交轴于点,交轴正半轴于点,且,正比例函数交直线于点,轴于点,轴于点.(1)求直线的函数表达式和点的坐标;(2)在轴负半轴上是否存在点,使得为等腰三角形?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.3、一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图1中线段AB所示.慢车离甲地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图1中线段AC所示.根据图象解答下列问题.(1)甲、乙两地之间的距离为_____km,线段AB的解析式为_____.两车在慢车出发_____小时后相遇;(2)设慢车行驶时间x(0≤x≤6,单位:h),快、慢车之间的距离为S(km).①当两车之间距离S=300km时,求x的值;②图2是S与x的函数图象的一部分,请补全S与x之间的函数图象(标上必要的数据).4、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.5、已知一次函数.(1)画出函数图象.(2)不等式>0的解集是_______;不等式<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离. -参考答案-一、单选题1、D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、A【解析】【分析】由题意直接根据一次函数的性质进行分析即可得到结论.【详解】解:∵直线y=﹣x+b中,k=﹣<0,∴y将随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.【点睛】本题考查一次函数的图象性质,注意掌握对于一次函数y=kx+b(k≠0),当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.3、A【解析】【分析】由图象所给信息对结论判断即可.【详解】由图象可知当x=0时,甲、乙两人在A、B两地还未出发故A,B之间的距离为1200m故①正确前12min为甲、乙的速度和行走了1200m故由图象可知乙用了24-4=20min走完了1200m则则故②正确又∵两人相遇时停留了4min∴两人相遇后从16min开始继续行走,由图象x=24时的拐点可知,到24min乙到达目的地则两人相遇后行走了24-16=8min,两人之间的距离为8×100=800米则b=800故③正确从24min开始为甲独自行走1200-800=400m则t=min故a=24+10=34故④正确综上所述①②③④均正确,共有四个结论正确.故选:A.【点睛】本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键.4、C【解析】【分析】根据(5,15),(7,19),确定函数的解析式,计算y=10时,x的值,结合生活实际,解答即可.【详解】设起步价以后函数的解析式为y=kx+b,把(5,15),(7,19)代入解析式,得,解得,∴y=2x+5,当y=10时,x=2.5,当x=10时,y=25,∴C错误,D正确,B正确,A正确,故选C.【点睛】本题考查了一次函数的实际应用,熟练掌握待定系数法,理解生活意义是解题的关键.5、D【解析】【分析】由点到轴的距离等于该点坐标横坐标的绝对值,可以得出结果.【详解】解:由题意知到轴的距离为到轴的距离是个单位长度故选D.【点睛】本题考察了点到坐标轴的距离.解题的关键在于明确距离的求解方法.距离为正值是易错点.解题技巧:点到轴的距离=;到轴的距离=.6、C【解析】【分析】根据一次函数的概念填写即可.【详解】解:把形如y=kx+b((k,b是常数,k≠0)的函数,叫做一次函数,故选:C.【点睛】本题考查了一次函数的概念,做题的关键是注意k≠0.7、B【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可.【详解】解:①满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;②满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;③满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;④,当时,,则y不是x的函数;综上,是函数的有①②③.故选:B.【点睛】本题主要考查了函数的定义.在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数.8、B【解析】【分析】根据一次函数的图象特点即可得.【详解】解:一次函数的一次项系数,常数项,直线经过第一、三、四象限,不经过第二象限,故选:B.【点睛】本题考查了一次函数的图象,熟练掌握一次函数的图象特点是解题关键.9、D【解析】【分析】利用x=-1时,求函数值进行一一检验是否为1即可【详解】解: 当x=-1时,,图象不过点,选项A不合题意;当x=-1时,,图象不过点,选项B不合题意;当x=-1时,,图象不过点,选项C不合题意;当x=-1时,,图象过点,选项D合题意;故选择:D.【点睛】本题考查求函数值,识别函数经过点,掌握求函数值的方法,点在函数图像上点的坐标满足函数解析式是解题关键.10、A【解析】【分析】根据二元一次方程组的解的定义知,该方程组的解就是组成方程组的两个二元一次方程的图象的交点.【详解】解:由图象及题意得:∵直线y=kx+b和y=mx+n交于点A(﹣2,3),∴方程组的解为.故选:A.【点睛】本题主要考查一次函数与二元一次方程组的解,熟练掌握一次函数的图象与性质是解题的关键.二、填空题1、-3【解析】【分析】点P在y轴上则该点横坐标为0,可解得m的值.【详解】解:在y轴上,∴m+3=0,解得m=-3.故答案为:-3.【点睛】本题主要考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.2、 一、二、三 一、三、四 一、二、四 二、三、四【解析】【分析】当k>0时,直线必过一、三象限,k<0时,直线必过二、四象限;当b>0时,直线必过一、二象限,b<0时,直线必过三、四象限;根据以上即可判断.【详解】(1)当k>0时,直线过一、三象限,b>0时,直线过一、二象限,则直线经过第一、二、三象限;故答案为:一、二、三(2)当k>0时,直线过一、三象限,b<0时,直线过三、四象限,则直线经过第一、三、四象限;故答案为:一、三、四(3)当k<0时,直线过二、四象限,b>0时,直线过一、二象限,则直线经过第一、二、四象限;故答案为:一、二、四(4)当k<0时,直线过二、四象限,b<0时,直线过三、四象限,则直线经过第二、三、四象限.故答案为:二、三、四【点睛】本题考查了一次函数的图象与性质,b的几何意义,关键是数形结合.3、【解析】【分析】观察函数图象可得当时,直线直线:在直线:的下方,于是得到不等式的解集.【详解】解:根据图象可知,不等式的解集为.故答案为:.【点睛】本题考查了一次函数的交点问题及不等式,解题的关键是掌握数形结合的解题方法.4、(4,3)【解析】【分析】由题意根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,进而依据A在B左边即可求出点B的坐标.【详解】解:∵AB∥x轴,A点坐标为(-1,3),∴点B的纵坐标为3,当A在B左边时,∵AB=5,∴点B的横坐标为-1+5=4,此时点B(4,3).故答案为:(4,3).【点睛】本题考查坐标与图形性质,主要利用了平行于x轴的直线上的点的纵坐标相等.5、2或-2##-2或2【解析】【分析】由函数解析式确定与x轴的交点坐标为,与y轴的交点坐标为(0,4),然后根据函数图象与坐标轴的面积为4列出方程求解即可.【详解】解:∵在中,当时,;当时,,∴的图象与x轴的交点坐标为,与y轴的交点坐标为(0,4),由题意可得:,解得:.故答案为:2或-2.【点睛】题目主要考查一次函数解析式的确定及其与坐标轴围成面积的计算方法,理解题意,得出方程是解题关键.三、解答题1、(1)线上零售水果的单价为每千克40元,线下批发的单价为每千克30元;(2)①;②线上零售量为到1000千克.【解析】【分析】(1)设线上零售水果的单价为每千克x元,线下批发的单价为每千克y元,根据题意列出二元一次方程组求解即可;(2)①由题意可得:线上零售m千克,则线下批发千克,利用销售数量、单价、销售总价的关系即可得;②当时,代入①结论求解即可得.【详解】解:(1)设线上零售水果的单价为每千克x元,线下批发的单价为每千克y元,由题意得:,解得:,∴线上零售水果的单价为每千克40元,线下批发的单价为每千克30元;(2)①由题意可得:线上零售m千克,则线下批发千克, ,即函数关系式为:;②由(1)可得:当时,,解得:,∴线上零售量为到1000千克.【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应的方程及函数解析式是解题关键.2、(1)直线AB的解析式为;;(2)当点为或时,为等腰三角形,理由见详解.【解析】【分析】(1)根据点A的坐标及,可确定点,设直线AB的解析式为:,将A、B两点代入求解即可确定函数解析式;将两个一次函数解析式联立解方程组即可确定点P的坐标;(2)设且,由,坐标可得线段,, 的长度,然后根据等腰三角形进行分类:①当时,②当时,③当时,分别进行求解即可得.【详解】解:(1)∵,∴,∵,∴,∴,设直线AB的解析式为:,将A、B两点代入可得:,解得:,∴直线AB的解析式为;将两个一次函数解析式联立可得:,解得:,∴;(2)设且,由,可得:,, ,为等腰三角形,需分情况讨论:①当时,可得,解得:或(舍去);②当时,可得:,方程无解;③当时,可得:,解得:,综上可得:当点为或时,为等腰三角形.【点睛】题目主要考查利用待定系数法确定一次函数解析式、一次函数交点与方程组的关系、等腰三角形的性质、坐标系中两点之间的距离等,理解题意,综合运用这些知识点是解题关键.3、(1)450;y1=﹣150x+450,2;(2)①或4;②见解析.【解析】【分析】(1)由一次函数的图象可得甲、乙两地之间的距离为450km,设线段AB的解析式为y1=k1x+b1,利用待定系数法可得出AB的解析式,根据路程、时间和速度的关系即可得答案;(2)根据题意得出函数解析式为S=,①把S=300代入解析式分别求出x的值即可;②根据题意得出函数解析式,画出函数的图象即可.【详解】解:(1)由图象可得:甲、乙两地之间的距离为450km;设线段AB的解析式为y1=k1x+b1,∵A(0,450),B(3,0),∴,解得:,∴线段AB的解析式为y1=450﹣150x(0≤x≤3);设两车在慢车出发x小时后相遇,()x=450,解得:x=2,答:两车在慢车出发2小时后相遇.故答案为:450;y1=﹣150x+450;2;(2),根据题意得出S与慢车行驶时间x(h)的函数关系式如下:S=,①当0≤x<2时,S=450x=300,解得:x=,当2≤x<3时,S=x=300,解得:x=(舍去),当3≤x≤6时,S=75x=300,解得:x=4,综上所述:x的值为或4.②其图象为折线图如下:【点睛】本题考查一次函数的应用及待定系数法求一次函数解析式,从函数图象中正确得出所需信息是解题关键.4、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)【解析】【分析】先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标.【详解】解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5).【点睛】本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标.5、(1)见解析;(2)x<-3;x>-3;(3)BC=.【解析】【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,∴一次函数y=-2x-6与x轴交点B的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x<-3时,一次函数y=-2x-6的图象在x轴上方;当x>-3时,一次函数y=-2x-6的图象在x轴下方.∴不等式-2x-6>0的解集是x<-3;不等式-2x-6<0的解集是x>-3.故答案是:x<-3,x>-3;(3)∵B(-3,0),C(0,-6),∴OB=3,OC=6,∴BC=【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.
相关试卷
这是一份2020-2021学年第十四章 一次函数综合与测试达标测试,共27页。试卷主要包含了若一次函数y=kx+b等内容,欢迎下载使用。
这是一份数学第十四章 一次函数综合与测试同步达标检测题,共24页。试卷主要包含了已知点A等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试一课一练,共24页。试卷主要包含了已知点,点P在第二象限内,P点到x等内容,欢迎下载使用。