小学人教版长方体和正方体的表面积公开课教案设计
展开长方体和正方体的表面积
教学目标:
知识与技能:
理解长方体和正方体表面积的意义,掌握长方体和正方体表面积的计算方法。
过程与方法:
学会解决实际生活中有关长方体和正方体表面积计算的问题。
情感态度与价值观:
培养学生的分析能力,发展学生的空间观念。
教学重难点:
教学重点:建立表面积的概念以及理解并掌握长方体表面积的计算方法。
教学难点:根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少。
教学工具:课件、题卡
教学过程
一、复习引入
(一)填空。
1、长方体一般是由( )长方形 (特殊情况有两个相对的面是 正方形 )围成的立体图形。
2、在一个长方体中,( )完全相同 ,( ) 长度相等 。
3、正方体是由( ) 完全相同的( ) 围成的立体图形。
(二)
(1)计算各长方体左正面的面积。4×2=8(平方厘米)
(2)计算各长方体中右侧面的面积。3×2=6(平方厘米)
(3)计算各长方体右上面的面积。2×2=4(平方厘米)
二、新知探究
1.初步认识长方体的表面积。
师:我们先来探究什么是长方体、正方体的表面积。(教师利用课件出示长方体牙膏盒)请同学们仔细观察:沿着棱剪开(纸盒粘接处多余的部分要剪掉),再展开,你发现了什么?
生1:我发现原来的立体图形变成了平面图形。
生2:我发现长方体的外表展开后是由6个长方形组成的。
2.初步认识正方体的表面积。
师:同学们观察的很仔细!(再出示正方体药盒课件)按同样的方法剪开,再展开,你又发现了什么?
生1:我发现正方体展开后也变成了平面图形。
生2:我发现正方体的外表展开后是由6个正方形组成的。
3.认识长方体、正方体表面积的含义。
师:说得对!请你拿出长方体或正方体纸盒,也用同样的方法剪开,再展开,看看展开后的形状,然后在展开后的图形中,分别用“上”、“下”、“前”、“后”、“左”、“右”标明6个面。师:从学生手中选一个长方体和一个正方体展开图贴在黑板上。问:通过观察课件和动手操作实物模型,谁知道什么叫做长方体或正方体的表面积?
生1:长方体或正方体的表面积就是指长方体或正方体外表的面积,也就是上下、前后、左右六个面的面积和。
生2:简单地说就是长方体或正方体六个面的总面积,叫做它的表面积。
我们知道了什么是长方体和正方体的表面积,怎样计算表面积呢?
4、探索活动:
“演示课件长方体的表面积”
上、下每个面,长_ 0.7米__,宽 _0.5米__,面积是 _0.35平方米___;
前、后每个面,长__0.7米 __,宽__0.4米__,面积是__0.28平方米___;
左、右每个面,长__0.5米 _,宽__0.4米 _,面积是___0.2平方米____。
教师温馨提示:
上下两个面大小------,它是由长方体的------和------作为长和宽的;
前后两个面大小相等,它是由长方体的----和----作为长和宽的;
左右两个面大小相等,它是由长方体的----和----作为长和宽的.
长方体的表面积如何计算?
教师温馨提示:
分别求出相对面的面积,再相加。
小组交流:集体研讨:
学生归纳,老师板书:
长方体表面积:长×宽×2 + 长×高×2 + 高×宽×2
或:(长×宽+ 长×高+ 高×宽)×2
5. 出示例1
做一个微波炉的包装箱,长0.7米,宽0.5米,高0.4米,至少要用多少平方米的硬纸板?
学生独立计算,教师巡视,选择两种算法,指定两名学生上黑板板书,并口述列式计算的依据。
生1:先算3个不同面的面积和再乘2。
(0.7×0.5+0.7×0.4+0.5×0.4)×2
生2:先分别求出两个相对面的面积和,再相加
0.7×0.5×2+0.7×0.4×2+0.5×0.4×2
所以长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示S=2(a×b+a×h+b×h)
6、一个正方体墨水盒,棱长6.5厘米。制作这个墨水盒至少需要多少平方厘米的硬纸板?
想:求至少用多少平方厘米的硬纸板,就是要求什么?自己试一试!
(6.5×6.5+6.5×6.5+6.5×6.5)×2
=(42.25+42.25+42.25)×2
=42.25×3×2
=253.5(平方厘米)
因为正方体的特性所以:
6.5×6.5×6
=42.25×6
=253.5(平方厘米)
答:制作这个墨水盒至少需要253.5平方厘米的硬纸板。
正方体表面积=棱长×棱长×6,用字母表示:S=6a2
三、巩固提升
1、计算下列图形的表面积。(单位:厘米)
(15×12+15×8+12×8)×2=792(平方厘米)
(18×9)×4+(9×9)×2=810(平方厘米)
25×25×6=3750(平方厘米)
10×10×6=600(平方厘米)
2、一个正方体礼品盒,棱长1.2dm。如果实际用纸是表面积的1.5倍,包装这个礼品盒至少用多少平方分米的包装纸?
1.2×1.2×6=8.64(平方分米) 8.64×1.5=12.96(平方分米)
答:包装这个礼品盒至少用12.96平方分米的包装纸。
3、一个玻璃鱼缸的形状是正方体,棱长3dm。制作这个鱼缸时至少需要玻璃多少平方分米? (鱼缸的上面没有盖。)
3×3×5=45(平方分米)
答:制作这个鱼缸时至少需要玻璃45平方分米。
4、亮亮家要给一个长0.75m,宽0.5m,高1.6m的简易衣柜换布罩(如下图,没有底面)。至少需要用布多少平方米?
0.75×0.5+0.5×1.6×2+0.75×1.6×2
=0.375+1.6+2.4
=4.375(平方米)
答:至少需要用布4.375平方米。
四、课后小结:本节课学习了什么?
长方体或正方体六个面的总面积,叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示S=2(a×b+a×h+b×h)
正方体表面积=棱长×棱长×6,用字母表示:S=6a2
板书设计:
长方体和正方体的表面积
长方体或正方体六个面的总面积,叫做它的表面积。
例1:做一个微波炉的包装箱,至少要用多少平方米的硬纸板?
(0.7×0.5+0.7×0.4+0.5×0.4)×2
=0.35×2+0.28×2+0.2×2
=0.7+0.56+0.4
=1.66(m2)
答:至少要用1.66m硬纸板。例2:一个正方体墨水盒,棱长6.5厘米。制作这个墨水盒至少需要多少平方厘米的硬纸板?
6.5×6.5×6
=42.25×6
=253.5(平方厘米)
答:制作这个墨水盒至少需要253.5平方厘米的硬纸板。
长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示S=2(a×b+a×h+b×h)
正方体表面积=棱长×棱长×6,用字母表示:S=6a
小学数学人教版五年级下册体积和体积单位教案: 这是一份小学数学人教版五年级下册体积和体积单位教案,共5页。教案主要包含了教学内容,教学目标,教学重难点,教学过程,板书设计,教学反思等内容,欢迎下载使用。
人教版五年级下册体积和体积单位教案: 这是一份人教版五年级下册体积和体积单位教案,共5页。教案主要包含了教学内容,教学目标,教学重难点,教学过程,板书设计,教学反思等内容,欢迎下载使用。
小学数学人教版五年级下册2、5的倍数的特征教案及反思: 这是一份小学数学人教版五年级下册2、5的倍数的特征教案及反思,共2页。教案主要包含了前置性学习,独立自主学习,合作互助学习,展示引导学习,评价提升学习等内容,欢迎下载使用。