初中数学北京课改版八年级下册第十四章 一次函数综合与测试练习题
展开京改版八年级数学下册第十四章一次函数综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若点在第三象限,则点在( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2、一次函数y=-x+2的图象与x轴,y轴分别交于A、B两点,以AB为腰,∠BAC=90°,在第一象限作等腰Rt△ABC,则直线BC的解析式为( )
A. B. C. D.
3、已知一次函数y=(1+2m)x﹣3中,函数值y随自变量x的增大而减小,那么m的取值范围是( )
A.m≤﹣ B.m≥﹣ C.m<﹣ D.m>
4、在探究“水沸腾时温度变化特点”的实验中,下表记录了实验中温度和时间变化的数据.
时间/分钟
0
5
10
15
20
25
温度/℃
10
25
40
55
70
85
若温度的变化是均匀的,则18分钟时的温度是( )
A.62℃ B.64℃ C.66℃ D.68℃
5、一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在该函数图象上,则( )
A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y2
6、下列关于变量x,y的关系,其中y不是x的函数的是( )
A. B.
C. D.
7、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是( )
A.关于x的不等式ax+b>0的解集是x>2
B.关于x的不等式ax+b<0的解集是x<2
C.关于x的方程ax+b=0的解是x=4
D.关于x的方程ax+b=0的解是x=2
8、
9、在平面直角坐标系中,已知点P(5,−5),则点P在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10、一次函数y=kx+b的图象如图所示,则下列说法错误的是( )
A.y随x的增大而减小
B.k<0,b<0
C.当x>4时,y<0
D.图象向下平移2个单位得y=﹣x的图象
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点A(2,0),B(0,2),将扇形AOB沿x轴正方向做无滑动的滚动,在滚动过程中点O的对应点依次记为点O1,点O2,点O3…,则O10的坐标是_________
2、对于直线y=kx+b(k≠0):
(1)当k>0,b>0时,直线经过第______象限;
(2)当k>0,b<0时,直线经过第______象限;
(3)当k<0,b>0时,直线经过第______象限;
(4)当k<0,b<0时,直线经过第______象限.
3、在平面直角坐标系中,A(2,2)、B(3,﹣3),若一次函数y=kx﹣1与线段AB有且只有一个交点,则k的取值范围是___.
4、如图,在平面直角坐标系中,,点,的坐标分别是,,则点的坐标是______.
5、在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx>﹣x+3的解集是______.
三、解答题(5小题,每小题10分,共计50分)
1、在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及ABC的顶点都在格点上.
(1)在图中作出DEF,使得DEE与ABC关于x轴对称;
(2)写出D,E两点的坐标:D ,E .
(3)求DEF的面积.
2、如图,在平面直角坐标系中,点O为坐标原点,点A在y轴上,点B,C在x轴上,,,.
(1)求线段AC的长;
(2)点P从C点出发沿射线CA以每秒2个单位长度的速度运动,过点A作,点F在y轴的左侧,,过点F作轴,垂足为E,设点P的运动时间为t秒,请用含t的式子表示EF的长;
(3)在(2)的条件下,直线BP交y轴于点K,,当时,求t的值,并求出点P的坐标.
3、综合与探究:
如图1,平面直角坐标系中,一次函数y=x+3图象分别交x轴、y轴于点A,B,一次函数y=﹣x+b的图象经过点B,并与x轴交于点C点P是直线AB上的一个动点.
(1)求A,B两点的坐标;
(2)求直线BC的表达式,并直接写出点C的坐标;
(3)请从A,B两题中任选一题作答.我选择 题.
A.试探究直线AB上是否存在点P,使以A,C,P为顶点的三角形的面积为18?若存在,求出点P的坐标;若不存在,说明理由;
B.如图2,过点P作x轴的垂线,交直线BC于点Q,垂足为点H.试探究直线AB上是否存在点P,使PQ=BC?若存在,求出点P的坐标;若不存在,说明理由.
4、在平面直角坐标系中,,且a,b满足,C、D两点分别是y轴正半轴、x轴负半轴上的两个动点:
(1)如图1,若,求的面积;
(2)如图1,若,且,求D点的坐标;
(3)如图2,若,以为边,在的右侧作等边,连接,当最短时,求A,E两点之间的距离;
5、马来西亚航空公司MH370航班自失联以来,我国派出大量救援力量,竭尽全力展开海上搜寻行动.某天中国海巡01号继续在南印度洋海域搜索,发现了一个位于东经101度,南纬25度的可疑物体.如果约定“经度在前,纬度在后”,那么我们可以用有序数对(101,25)表示该可疑物体的位置,仿照此表示方法,东经116度,南纬38度如何用有序数对表示?
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
【详解】
∵点P(m,n)在第三象限,
∴m<0,n<0,
∴-m>0,-n>0,
∴点在第一象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
2、D
【解析】
【分析】
由题意易得B的坐标是(0,2),A的坐标是(5,0),作CE⊥x轴于点E,则有∠ACE=∠BAO,然后可得△ABO≌△CAE,进而可得C的坐标是(7,5),设直线BC的解析式是y=kx+b,最后利用待定系数法可求解.
【详解】
解:∵一次函数y=-x+2中,
令x=0得:y=2;令y=0,解得x=5,
∴B的坐标是(0,2),A的坐标是(5,0).
若∠BAC=90°,如图1,作CE⊥x轴于点E,
∵∠BAC=90°,
∴∠OAB+∠CAE=90°,
又∵∠CAE+∠ACE=90°,
∴∠ACE=∠BAO.
在△ABO与△CAE中,,
∴△ABO≌△CAE(AAS),
∴OB=AE=2,OA=CE=5,
∴OE=OA+AE=2+5=7.
则C的坐标是(7,5).
设直线BC的解析式是y=kx+b,
根据题意得:,解得,
∴直线BC的解析式是y=x+2.
故选:D.
【点睛】
本题主要考查一次函数与几何的综合,熟练掌握一次函数的图象与性质是解题的关键.
3、C
【解析】
【分析】
利用一次函数的参数的正负与函数增减性的关系,即可求出m的取值范围.
【详解】
解:函数值y随自变量x的增大而减小,那么1+2m<0,
解得m<.
故选:C.
【点睛】
本题主要是考查了一次函数的值与函数增减性的关系,,一次函数为减函数,,一次函数为增函数,掌握两者之间的关系,是解决该题的关键.
4、B
【解析】
【分析】
根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,,代入解析式求解确定函数解析式,然后将代入求解即可得.
【详解】
解:根据图表可得:温度与时间的关系符合一次函数关系式,
设温度T与时间x的函数关系式为:,将,,代入解析式可得:
,
解得:,
∴温度T与时间x的函数关系式为:,将其他点代入均符合此函数关系式,
当时,
,
故选:B.
【点睛】
题目主要考查一次函数的应用,理解题意,掌握根据待定系数法确定函数解析式是解题关键.
5、A
【解析】
【分析】
先根据图象在平面坐标系内的位置确定m、n的取值范围,进而确定函数的增减性,最后根据函数的增减性解答即可.
【详解】
解:∵一次函数y=mx+n的图象经过第一、二、四象限,
∴m<0,n>0
∴y随x增大而减小,
∵1<3,
∴y1>y2.
故选:A.
【点睛】
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系、一次函数的增减性等知识点,图象在坐标平面内的位置确定m、n的取值范围成为解答本题的关键.
6、D
【解析】
【详解】
解:A、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
B、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
C、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;
故选:D.
【点睛】
本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数)是解题关键.
7、D
【解析】
【分析】
直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.
【详解】
解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;
B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;
C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;
D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;
故选:D.
【点睛】
本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.
8、C
【解析】
【分析】
根据第三象限内点的坐标横纵坐标都为负的直接可以判断
【详解】
解:在平面直角坐标系中,点P(﹣2,﹣3)在第三象限
故选C
【点睛】
本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.
9、D
【解析】
【分析】
根据各象限内点的坐标特征解答即可.
【详解】
解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
10、B
【解析】
【分析】
由一次函数的图象的走势结合一次函数与轴交于正半轴,可判断A,B,由图象可得:当x>4时,函数图象在轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.
【详解】
解:一次函数y=kx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;
一次函数y=kx+b, y随x的增大而减小,与轴交于正半轴,所以 故B符合题意;
由图象可得:当x>4时,函数图象在轴的下方,所以y<0,故C不符合题意;
由函数图象经过
,解得:
所以一次函数的解析式为:
把向下平移2个单位长度得:,故D不符合题意;
故选B
【点睛】
本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.
二、填空题
1、(,2)
【解析】
【分析】
先求出的长度,然后分别求出点的坐标为(2,2),点的坐标为(,2),点的坐标为(,0),即可得到观察图形可知,O点坐标变化三次后回到x轴正半轴,每个回到x轴横坐标增加,由此求解即可.
【详解】
解:∵A(2,0),B(0,2),
∴OA=BA=2,∠AOB=90°,
∴的长度,
∵将扇形AOB沿x轴正方形做无滑动的滚动,
∴,,
∴点的坐标为(2,2),
∴点的坐标为(,2),
∴点的坐标为(,0),
∴观察图形可知,O点坐标变化三次后回到x轴正半轴,每个回到x轴横坐标增加,
∵10÷3=3余3,
∴点的坐标为(,2),即(,2),
故答案为:(,2).
【点睛】
本题主要考查了点的坐标规律探索,求弧长,解题的关键在于能够根据题意找到规律求解.
2、 一、二、三 一、三、四 一、二、四 二、三、四
【解析】
【分析】
当k>0时,直线必过一、三象限,k<0时,直线必过二、四象限;当b>0时,直线必过一、二象限,b<0时,直线必过三、四象限;根据以上即可判断.
【详解】
(1)当k>0时,直线过一、三象限,b>0时,直线过一、二象限,则直线经过第一、二、三象限;
故答案为:一、二、三
(2)当k>0时,直线过一、三象限,b<0时,直线过三、四象限,则直线经过第一、三、四象限;
故答案为:一、三、四
(3)当k<0时,直线过二、四象限,b>0时,直线过一、二象限,则直线经过第一、二、四象限;
故答案为:一、二、四
(4)当k<0时,直线过二、四象限,b<0时,直线过三、四象限,则直线经过第二、三、四象限.
故答案为:二、三、四
【点睛】
本题考查了一次函数的图象与性质,b的几何意义,关键是数形结合.
3、﹣≤k≤
【解析】
【分析】
把A点和B点坐标分别代入计算出对应的k的值,然后利用一次函数图象与系数的关系确定k的范围.
【详解】
把A(2,2)代入y=kx﹣1得2k﹣1=2,解得k=;
把B(3,﹣3)代入y=kx﹣1得3k﹣1=﹣3,解得k=﹣,
所以当一次函数y=kx﹣1与线段AB只有一个交点时,﹣≤k≤.
即k的取值范围为﹣≤k≤.
故答案为:﹣≤k≤.
【点睛】
本题主要考查了一次函数图象,掌握一次函数图象与系数的关系成为解答本题的关键.
4、
【解析】
【分析】
如图,过作于 证明轴,则轴, 再利用等腰三角形的性质求解 利用勾股定理求解 从而可得答案.
【详解】
解:如图,过作于
轴,则轴,
故答案为:
【点睛】
本题考查的是等腰三角形的性质,坐标与图形,勾股定理的应用,掌握“坐标与线段长度的关系”是解本题的关键.
5、x>1
【解析】
【分析】
利用函数与不等式的关系,找到正比例函数高于一次函数图像的那部分对应的自变量取值范围,即可求出解集.
【详解】
解:由图可知:不等式kx>﹣x+3,正比例函数图像在一次函数上方的部分,对应的自变量取值为x>1.
故此不等式的解集为x>1.
故答案为:x>1.
【点睛】
本题主要是考查了一次函数与不等式,熟练地应用函数图像求解不等式的解集,培养数形结合的能力,是解决该类问题的要求.
三、解答题
1、最大588cm
故答案为3,588.
(5)
根据无盖长方体盒子的容积的变化,截去的正方形边长在3与4之间时,无盖长方体盒子的容积最大;
当x=3,5时,b(a-2b)2=3.5×(20-2×3.5)2=591.5cm3,
当时,b(a-2b)2=3.25×(20-2×3.25)2=592.3125cm3,
当时,b(a-2b)2=3.375×(20-2×3.375)2=592.5234375cm3,
当剪去图形的边长为3.3cm时,所得的无盖长方体的容积最大,此时无盖长方体的容积是592.548cm3.
因此表格中正方形的边长数据可以再精确一些,可以精确到小数点后一位或两位.
【点睛】
本题考查无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题,掌握无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题是解题关键.
2.(1)直线的解析式为;(2);(3)或.
【解析】
【分析】
(1)在中,利用勾股定理确定,由对称设,,,再利用勾股定理即可确定点B的坐标,然后代入解析式即可;
(2)由(1)得,BC=OB=3,根据O点关于直线AB的对称点C点在直线AD上,可得,即两个三角形的面积相同,使的面积与的面积相同,只需要找到的面积与的面积相同的点即可,设点,两个三角形的高均为线段OA长度,只需要底相同即可,根据底相同列出方程求解即可得;
(3)设若直线、与直线夹角等于,由图可得为等腰直角三角形,作于,于,可得,,
利用全等三角形的判定及性质可得,,直线过,直线的解析式为:,设坐标为,则,由各线段间的数量关系可得点坐标为,将其代入直线AB的解析式,即可得出t的值,然后点E、F坐标,代入解析式求解即可.
【详解】
解:(1),
,即,
又,
,
设直线的解析式为,将点代入得,
直线的解析式为.
在中,,
点、点关于直线对称,
设,,,
,
在中,,
,
,
将点B代入
直线的解析式为;
(2)由(1)得,BC=OB=3,如图所示:
∵O点关于直线AB的对称点C点在直线AD上,
∴,
∴,
使,
则设点,
两个三角形的高均为线段OA长度,使底相同即:
,
解得:或(舍去),
∴;
(3)如图,设若直线、与直线夹角等于,
即为等腰直角三角形,作于,于,
∴,,
∵,
∴,
∵,
∴,
在与中,
,
∴,
,,
直线过,
即,解得:,
直线的解析式为:,
设坐标为,则,,,
由线段间的关系可得:
点坐标为,
点在直线上,
,
解得:,
,,
当直线过点时,,解得:;
当直线过点时,,解得:;
所以或.
【点睛】
本题主要考查了一次函数的综合应用,涉及勾股定理、全等三角形的判定和性质等知识点,作出相应图象,根据图象之间的关系进行求解是本题解题的关键.
3.(1)见解析;(2)(﹣1,﹣4),(﹣4,1);(3)9.5
【解析】
【分析】
(1)先找出点A、B、C关于x轴的对称点,然后依次连接即可得;
(2)根据△DEF的位置,即可得出D,E两点的坐标;
(3)依据割补法进行计算,使用长方形面积减去三个三角形面积即可得到△DEF的面积.
【详解】
解:(1)如图所示,△DEF即为所求;
(2)由图可得,D(﹣1,﹣4),E(﹣4,1);
故答案为:(﹣1,﹣4),(﹣4,1);
(3),
∴面积为9.5.
【点睛】
题目主要考查作轴对称图形,点在坐标系中的位置及利用割补法求三角形面积,熟练掌握轴对称图形的作法是解题关键.
2、(1)8,(2)见解析,(3)(,)或(,);
【解析】
【分析】
(1)根据30°角所对直角边等于斜边一半,求出OA长,即可求AC长;
(2)作PG⊥OA于G,证△AFE≌△PAG,得出,用含t的式子表示AG的长即可;
(3)作PN⊥OB于N,证Rt△BOK≌Rt△AOC,得出,求出AP的长即可求t的值,求出NP、ON的长即可求坐标.
【详解】
解:(1)∵,,
∴,
∵,,
∴;
(2)作PG⊥OA于G,当点P在线段CA上时,CP=2t,AP=8-2t,
∵,
∴,
∴,
∴,
∵,
∴△AFE≌△PAG,
∴,
∵,
∴,
∴,
∴;
当点P在线段CA延长线上时,CP=2t,AP=2t -8,
同理可得△AFE≌△PAG,
(3)作PN⊥OB于N,
如图,∵,,,
∴Rt△BOK≌Rt△AOC,
∴, ,
∵,
∴,
∴,
此时,点P在线段CA延长线上,
∴,
;
∵,
∴,
∵PN⊥OB,
∵,
∴,
∴,
∴,
∵,
∴,
点P的坐标为(,)
如图,同理可知Rt△BOK≌Rt△AOC,
,
∵,
∴,
∴,
∴,
∴,
∴,
∴,
,
,
同理可得,,,,
点P的坐标为(,);
综上,点P的坐标为(,)或(,);
【点睛】
本题考查了全等三角形的判定与性质,含30°角的直角三角形的性质,解题关键是恰当作辅助线,通过证明三角形全等,得出线段之间的关系.
3、(1)(﹣6,0),(0,3);(2)y=﹣x+3,(3,0);(3)选A,存在,点P的坐标为(2,4)或(﹣14,﹣4);选B,存在,点P的坐标为(2,+3)或(﹣2,﹣+3).
【解析】
【分析】
(1)根据坐标轴上点的坐标特征求A点和B点坐标;
(2)将B点坐标(0,3)代入一次函数y=−x+b即可求解;
(3)A.过点P作PH⊥x轴于H,设点P(x,x+3),则PH=,根据S△ACP=AC•PH=18可得PH的值,即可求解.
B.过点P作x轴的垂线,交直线BC于点Q,垂足为点H.设点P(x,x+3),则Q(x,−x+3),根据PQ=BC列方程求解即可.
【详解】
解:(1)当y=0时,x+3=0,解得x=﹣6,则A点坐标为(﹣6,0);
当x=0时,y=x+3=3,则B点坐标为(0,3);
(2)将B点坐标(0,3)代入一次函数y=﹣x+b得:b=3,
∴直线BC的表达式为y=﹣x+3,
当y=0时,﹣x+3=0,解得x=3,则C点坐标为(3,0);
(3)A.过点P作PH⊥x轴于H,
设点P(x,x+3),
∴PH=,
∵A点坐标为(﹣6,0),C点坐标(3,0),
∴AC=9,
∵S△ACP=AC•PH=×9•PH=18,
∴PH=4,
∴x+3=±4,
当x+3=4时,x=2;当x+3=﹣4时,x=﹣14,
∴存在,点P的坐标为(2,4)或(﹣14,﹣4);
B.如图,过点P作x轴的垂线,交直线BC于点Q,垂足为点H.
设点P(x,x+3),则Q(x,﹣x+3),
∴PQ=,
∵B点坐标(0,3),C点坐标(3,0),
∴OB=OC=3,
∴BC=,
∵PQ=BC,
∴,解得:x=或﹣,
∴存在,点P的坐标为(2,+3)或(﹣2,﹣+3).
【点睛】
此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积,勾股定理,待定系数法,用方程的思想解决问题是解本题的关键.
4、 (1)的面积为12;(2) D点的坐标为-2,0;(3) A,E两点之间的距离为.
【解析】
【分析】
(1)利用完全平方式和绝对值的性质求出a, b,然后确定A、B两点坐标,从而利用三角形面积公式求解即可;
(2)根据题意判断出△CBD≅△DAE,从而得到CB= AD,然后利用勾股定理求出CB,即可求出结论;
(3)首先根据已知推出△DCB≅△ECA ,得到∠DBC=∠EAC=120°,进一步推出AE∥BC ,从而确定随着D点的运动,点E在过点A且平行于BC的直线PQ上运动,再根据点到直线的最短距离为垂线段的长度,确定OE最短时,各点的位置关系,最后根据含30°角的直角三角形的性质求解即可.
【详解】
解: (1) :∵a+b2+b+3=0,
由非负性可知:a+b=0b+3=0 ,
解得:a=3b=-3
∴A(3,0), B(-3,0), AB=3-(-3)=6,
∵ C(0,4),
∴OC=4,
∴S△ABC=12AB·OC=12×6×4=12;
(2)由(1)知A(3,0), B(-3,0),
∴OA=OB,
∵OC⊥AB,
∴∠AOC=∠BOC=90°,
在△AOC和△BOC中,
OA=OB∠AOC=∠BOCOC=OC ,
∴△AOC≅△BOCSAS ,
∴∠CBO=∠CAO,
∵∠CDA=∠CDE +∠ADE=∠BCD+∠CBA,∠CBA=∠CDE,
∴∠ADE=∠BCD,
在△BCD和△ADE中,
∠BCD=∠ADE∠CBD=∠DAEBD=AE ,
∴△BCD≅△ADEAAS,
∴CB= AD,
∵ B(-3,0), C(0,4),
∴OB=3,OC=4,
∴ BC=OB2+OC2=5 ,
∴AD=BC=5,
∵A(3,0),
∴D(-2,0);
(3)由(2) 可知CB=CA,
∵∠CBA=60°,
∴△ABC为等边三角形,∠BCA=60°, ∠DBC=120°,
∵△CDE为等边三角形,
∴CD=CE,∠DCE=60°,
∵∠DCE=∠DCB+∠BCE,∠BCA=∠BCE+∠ECA,
∴∠DCB=∠ECA,
在△DCB和△ECA中,
CD=CE∠DCB=∠ECACB=CA ,
∴△DCB≌△ECA( SAS),
∴∠DBC=∠EAC= 120°,
∵∠EAC+∠ACB= 120°+60°= 180°,
∴AE∥BC,
即:随着D点的运动,点E在过点A且平行于BC的直线PQ上运动,
∵要使得OE最短,
∴如图所示,当OE⊥PQ时,满足OE最短,此时∠OEA=90°,
∵∠DBC=∠EAC=120°,∠CAB=60°,
∴∠OAE=∠EAC-∠CAB=60°,∠AOE= 30°,
∵ A(3,0),
∴OA=3,
∴AE=12OA=32
∴当OE最短时,A,E两点之间的距离为.
【点睛】
本题考查坐标与图形,全等三角形的判定与性质,等腰三角形和等边三角形的判定与性质等,理解平面直角坐标系中点坐标的特征,掌握等腰或等边三角形的性质,熟练使全等三角形的判定与性质是解题关键.
5、东经116度,南纬38度可以表示为(116,38).
【解析】
【分析】
根据“经度在前,纬度在后”的顺序,可以将东经116度,南纬38度用有序数对(116,38)表示.
【详解】
解:由题意可知东经116度,南纬38度,可用有序数对(116,38)表示.
故东经116度,南纬38度表示为(116,38).
【点睛】
本题考察了用有序数对表示位置.解题的关键在于读懂题意中给定的规则.
2020-2021学年第十四章 一次函数综合与测试测试题: 这是一份2020-2021学年第十四章 一次函数综合与测试测试题,共23页。试卷主要包含了下列命题中,真命题是,在下列说法中,能确定位置的是,已知点A等内容,欢迎下载使用。
北京课改版八年级下册第十四章 一次函数综合与测试习题: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试习题,共22页。试卷主要包含了已知点A,点在第四象限,则点在第几象限等内容,欢迎下载使用。
2021学年第十四章 一次函数综合与测试当堂达标检测题: 这是一份2021学年第十四章 一次函数综合与测试当堂达标检测题,共22页。试卷主要包含了如图,一次函数y=kx+b,一次函数y=,,两地相距80km,甲等内容,欢迎下载使用。