数学八年级下册第十五章 四边形综合与测试课后复习题
展开
这是一份数学八年级下册第十五章 四边形综合与测试课后复习题,共26页。试卷主要包含了如图,M等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在中,,,AD平分,E是AD中点,若,则CE的长为( )
A. B. C. D.
2、下列图形中,既是中心对称图形又是轴对称图形的有几个( )
A.1个 B.2个 C.3个 D.4个
3、如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E,若∠1=40°,则∠2的度数为( )
A.25° B.20° C.15° D.10°
4、如图,在正方形有中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作⊥DE交DG的延长线于点H,连接,那么的值为( )
A.1 B. C. D.2
5、如图,M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P,则∠APN的度数是( )
A.120° B.118° C.110° D.108°
6、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )
A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE
7、如图,A,B,C是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是( )
A.A,B,C都不在 B.只有B
C.只有A,C D.A,B,C
8、下图是文易同学答的试卷,文易同学应得( )
A.40分 B.60分 C.80分 D.100分
9、如图,矩形ABCD的对角线AC和BD相交于点O,若∠AOD=120°,AC=16,则AB的长为( )
A.16 B.12 C.8 D.4
10、下列图案中,是中心对称图形,但不是轴对称图形的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若一个n边形的每个内角都等于135°,则该n边形的边数是____________.
2、如图,将长方形ABCD按图中方式折叠,其中EF、EC为折痕,折叠后、、E在一直线上,已知∠BEC=65°,那么∠AEF的度数是_____.
3、一个凸边形的边数与对角线条数的和小于20,且能被5整除,则______.
4、如图,在矩形ABCD中,AB=2,AD=2,E为BC边上一动点,F、G为AD边上两个动点,且∠FEG=30°,则线段FG的长度最大值为 _____.
5、判断:
(1)菱形的对角线互相垂直且相等(________)
(2)菱形的对角线把菱形分成四个全等的直角三角形(________)
三、解答题(5小题,每小题10分,共计50分)
1、如图,在矩形中,为对角线.
(1)用尺规完成以下作图:在上找一点,使,连接,作的平分线交于点;(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,若,求的度数.
2、(1)如图1,∠ADC=120°,∠BCD=140°,∠DAB和∠CBE的平分线交于点,则∠AFB的度数是 ;
(2)如图2,若∠ADC=,∠BCD=,且,∠DAB和∠CBE的平分线交于点,则∠AFB= (用含,的代数式表示);
(3)如图3,∠ADC=,∠BCD=,当∠DAB和∠CBE的平分线AG,BH平行时,,应该满足怎样的数量关系?请说明理由;
(4)如果将(2)中的条件改为,再分别作∠DAB和∠CBE的平分线,∠AFB与,满足怎样的数量关系?请画出图形并直接写出结论.
3、如图,平行四边形ABCD中,点E、F分别在CD、BC的延长线上,.
(1)求证:D是EC中点;
(2)若,于点F,直接写出图中与CF相等的线段.
4、如图,在中,AE平分,于点E,点F是BC的中点
(1)如图1,BE的延长线与AC边相交于点D,求证:
(2)如图2,中,,求线段EF的长.
5、如图,矩形ABCD中,,,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形.
(2)当四边形BEDF是菱形时,求EF的长.
-参考答案-
一、单选题
1、B
【分析】
根据三角形内角和定理求出∠BAC,根据角平分线的定义∠DAB=∠B,求出AD,根据直角三角形的性质解答即可.
【详解】
解:∵∠ACB=90°,∠B=30°,
∴∠BAC=90°-30°=60°,
∵AD平分∠BAC,
∴∠DAB=∠BAC=30°,
∴∠DAB=∠B,
∴AD=BD=a,
在Rt△ACB中,E是AD中点,
∴CE=AD=,
故选: B.
【点睛】
本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键.
2、A
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;
第二个图形是轴对称图形,不是中心对称图形,不符合题意;
第三个图形是轴对称图形,不是中心对称图形,不符合题意;
第四个图形既是轴对称图形,也是中心对称图形,符合题意;
既是中心对称图形又是轴对称图形的只有1个,
故选:A.
【点睛】
本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3、D
【分析】
根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.
【详解】
解:∵四边形ABCD是矩形,
∴∠ABC=90°,CD∥AB,
∴∠ABD=∠1=40°,
∴∠DBC=∠ABC-∠ABD=50°,
由折叠可得∠DB C′=∠DBC=50°,
∴∠2=∠DB C′−∠DBA=50°−40°=10°,
故选D.
【点睛】
本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.
4、B
【分析】
作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.
【详解】
解:如图,在线段AD上截取AM,使AM=AE,
,
∵AD=AB,
∴DM=BE,
∵点A关于直线DE的对称点为F,
∴△ADE≌△FDE,
∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,
∴∠DFG=90°,
在Rt△DFG和Rt△DCG中,
∵,
∴Rt△DFG≌Rt△DCG(HL),
∴∠3=∠4,
∵∠ADC=90°,
∴∠1+∠2+∠3+∠4=90°,
∴2∠2+2∠3=90°,
∴∠2+∠3=45°,
即∠EDG=45°,
∵EH⊥DE,
∴∠DEH=90°,△DEH是等腰直角三角形,
∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,
∴∠1=∠BEH,
在△DME和△EBH中,
∵,
∴△DME≌△EBH(SAS),
∴EM=BH,
Rt△AEM中,∠A=90°,AM=AE,
∴,
∴ ,即=.
故选:B.
【点睛】
本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.
5、D
【分析】
由五边形的性质得出AB=BC,∠ABM=∠C,证明△ABM≌△BCN,得出∠BAM=∠CBN,由∠BAM+∠ABP=∠APN,即可得出∠APN=∠ABC,即可得出结果.
【详解】
解:∵五边形ABCDE为正五边形,
∴AB=BC,∠ABM=∠C,
在△ABM和△BCN中
,
∴△ABM≌△BCN(SAS),
∴∠BAM=∠CBN,
∵∠BAM+∠ABP=∠APN,
∴∠CBN+∠ABP=∠APN=∠ABC=
∴∠APN的度数为108°;
故选:D.
【点睛】
本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键.
6、B
【分析】
先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.
【详解】
解:∵四边形ABCD为平行四边形,
∴AD∥BC,且AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四边形BCED为平行四边形,
A、∵AB=BE,DE=AD,
∴BD⊥AE,
∴□DBCE为矩形,故本选项不符合题意;
B、∵DE⊥DC,
∴∠EDB=90°+∠CDB>90°,
∴四边形DBCE不能为矩形,故本选项符合题意;
C、∵∠ADB=90°,
∴∠EDB=90°,
∴□DBCE为矩形,故本选项不符合题意;
D、∵CE⊥DE,
∴∠CED=90°,
∴□DBCE为矩形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.
7、D
【分析】
根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角形斜边上的中线性质即可得.
【详解】
解:如图所示:连接BD,
∵,,,
∴,
∴为直角三角形,
∵D为AC中点,
∴,
∵覆盖半径为300 ,
∴A、B、C三个点都被覆盖,
故选:D.
【点睛】
题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键.
8、B
【分析】
分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.
【详解】
解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;
(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;
(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;
(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;
(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,
∴文易同学答对3道题,得60分,
故选:B.
【点睛】
本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键
9、C
【分析】
由题意可得AO=BO=CO=DO=8,可证△ABO是等边三角形,可得AB=8.
【详解】
解:∵四边形ABCD是矩形,
∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,
∴OA=OB=8,
∵∠AOD=120°,
∴∠AOB=60°,
∴△AOB是等边三角形,
∴AB=AO=BO=8,
故选:C.
【点睛】
本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键.
10、C
【分析】
根据轴对称图形和中心对称图形的定义求解即可.
【详解】
解:A.既是轴对称图形,又是中心对称图形,本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,本选项不符合题意;
C.是中心对称图形,但不是轴对称图形,本选项符合题意;
D.既是轴对称图形,又是中心对称图形,本选项不符合题意;
故选:C.
【点睛】
此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形和中心对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
二、填空题
1、8
【分析】
根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n边形的边数
【详解】
解:∵一个n边形的每个内角都等于135°,
∴则这个n边形的每个外角等于
该n边形的边数是
故答案为:
【点睛】
本题考查了多边形的内角与外角的关系,求得多边形的外角是解题的关键.
2、25°
【分析】
利用翻折变换的性质即可解决.
【详解】
解:由折叠可知,∠EF=∠AEF,∠EC=∠BEC=65°,
∵∠EF+∠AEF+∠EC+∠BEC=180°,
∴∠EF+∠AEF=50°,
∴∠AEF=25°,
故答案为:25°.
【点睛】
本题考查了折叠的性质,熟练掌握折叠的性质是解题的关键.
3、5或6
【分析】
先把多边形的边数与对角线的条数之和因式分解,列不等式得出,两个连续整式的积小于40根据能被5整除,当n=5,能被5整除,当n-1=5,n=6,能被5整除即可 .
【详解】
解:<20,
∴,
∵能被5整除,
当n=5,能被5整除,
当n-1=5,n=6,能被5整除,
故答案为5或6.
【点睛】
本题考查因式分解,熟记n边形对角线条数的公式,列不等式,根据条件进行讨论是解题关键.
4、
【分析】
如图所示,在中,FG边的高为AB=2,∠FEG=30°,为定角定高的三角形,故当E与B点或C点重合,G与D点重合或F与A点重合时,FG的长度最大,则由矩形ABCD中,AB=2,AD=2可知,∠ABD=60°,故∠ABF=60°-30°=30°,则AF=,则FG=AD-AF=.
【详解】
如图所示,在中,FG边的高为AB=2,∠FEG=30°,为定角定高的三角形
故当E与B点或C点重合,G与D点重合或F与A点重合时,FG的长度最大
∵矩形ABCD中,AB=2,AD=2
∴∠ABD=60°
∴∠ABF=60°-30°=30°
∴AF=
∴FG=AD-AF=.
故答案为:.
【点睛】
本题考查了四边形中动点问题,图解法数学思想依据是数形结合思想. 它的应用能使复杂问题简单化、 抽象问题具体化. 特殊四边形的几何问题, 很多困难源于问题中的可动点. 如何合理运用各动点之间的关系,同学们往往缺乏思路, 常常导致思维混乱.实际上求解特殊四边形的动点问题,关键是是利用图解法抓住它运动中的某一瞬间,寻找合理的代数关系式, 确定运动变化过程中的数量关系, 图形位置关系, 分类画出符合题设条件的图形进行讨论, 就能找到解决的途径, 有效避免思维混乱.
5、× √
【分析】
根据菱形的性质,即可求解.
【详解】
解:(1)菱形的对角线互相垂直且平分;
(2)菱形的对角线把菱形分成四个全等的直角三角形.
故答案为:(1)×;(2)√
【点睛】
本题主要考查了菱形的性质,熟练掌握菱形的对角线互相垂直且平分是解题的关键.
三、解答题
1、(1)图形见解析;(2)
【分析】
(1)利用尺规根据题意即可完成作图;
(2)结合(1)根据等腰三角形的性质和三角形外角定理可得的度数.
【详解】
(1)如图,点E和点F即为所求;
(2)∵,∠ABD=68°,
∴∠AEB=∠AEB=68°
∴∠EAB=180°-68°-68°=44°,
∴∠EAD=90°-44°=46°,
∵AF平分∠DAE,
∴∠FAE=∠DAE=23°,
∴
【点睛】
题考查了尺规作图-作角平分线,矩形的性质,熟练掌握5种基本作图是解决此类问题的关键.
2、(1)40°;(2);(3)若AG∥BH,则α+β=180°,理由见解析;(4),图见解析.
【分析】
(1)利用四边形内角和定理得到∠DAB+∠ABC=360°-120°-140°=100°.再利用三角形的外角性质得到∠F=∠FBE-∠FAB,通过计算即可求解;
(2)同(1),通过计算即可求解;
(3)由AG∥BH,推出∠GAB=∠HBE.再推出AD∥BC,再利用平行线的性质即可得到答案;
(4)利用四边形内角和定理得到∠DAB+∠ABC=360°-∠D-BCD=360°-α-β.再利用三角形的外角性质得到∠F=∠MAB-∠ABF,通过计算即可求解.
【详解】
解:(1)∵BF平分∠CBE,AF平分∠DAB,
∴∠FBE=∠CBE,∠FAB=∠DAB.
∵∠D+∠DCB+∠DAB+∠ABC=360°,
∴∠DAB+∠ABC=360°-∠D-∠DCB
=360°-120°-140°=100°.
又∵∠F+∠FAB=∠FBE,
∴∠F=∠FBE-∠FAB=∠CBE−∠DAB
= (∠CBE−∠DAB)
= (180°−∠ABC−∠DAB)
=×(180°−100°)
=40°.
故答案为:40°;
(2)由(1)得:∠AFB= (180°−∠ABC−∠DAB),
∠DAB+∠ABC=360°-∠D-∠DCB.
∴∠AFB= (180°−360°+∠D+∠DCB)
=∠D+∠DCB−90°
=α+β−90°.
故答案为:;
(3)若AG∥BH,则α+β=180°.理由如下:
若AG∥BH,则∠GAB=∠HBE.
∵AG平分∠DAB,BH平分∠CBE,
∴∠DAB=2∠GAB,∠CBE=2∠HBE,
∴∠DAB=∠CBE,
∴AD∥BC,
∴∠DAB+∠DCB=α+β=180°;
(4)如图:
∵AM平分∠DAB,BN平分∠CBE,
∴∠BAM=∠DAB,∠NBE=∠CBE,
∵∠D+∠DAB+∠ABC+∠BCD=360°,
∴∠DAB+∠ABC=360°-∠D-BCD=360°-α-β,
∴∠DAB+180°-∠CBE=360°-α-β,
∴∠DAB-∠CBE=180°-α-β,
∵∠ABF与∠NBE是对顶角,
∴∠ABF=∠NBE,
又∵∠F+∠ABF=∠MAB,
∴∠F=∠MAB-∠ABF,
∴∠F=∠DAB−∠NBE
=∠DAB−∠CBE
= (∠DAB−∠CBE)
= (180°−α−β)
=90°-α−β.
【点睛】
本题主要考查了三角形的外角性质、四边形内角和定理、平行线的性质、角平分线的定义.借助转化的数学思想,将未知条件转化为已知条件解题.
3、(1)见祥解;(2)AB=DC=DE=DF=CF,证明见详解.
【分析】
(1)根据四边形ABCD是平行四边形,得出AB∥CD即(AB∥ED),AB=CD,根据,可证四边形ABDE为平行四边形,得出AB=DE即可;
(2)根据EF⊥BF,CD=ED,根据直角三角形斜边中线可得DF=CD=ED,再证△DCF为等边三角形即可.
【详解】
证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD即(AB∥ED),AB=CD,
∵,
∴四边形ABDE为平行四边形,
∴AB=DE,
∴CD=ED,
∴点D为CE中点;
(2)结论为:AB=DC=DE=DF=CF,
∵EF⊥BF,CD=ED,
∴DF=CD=ED,
∵AB∥CD,∠ABC=60°,
∴∠DCF=∠ABC=60°,
∴△DCF为等边三角形,
∴CF=CD=DF=AB=ED.
【点睛】
本题考查平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质,掌握平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质是解题关键.
4、(1)见解析;(2)2
【分析】
(1)利用ASA定理证明△AEB≌△AED,得到BE=ED,AD=AB,根据三角形中位线定理解答;
(2)分别延长BE、AC交于点H,仿照(1)的过程解答.
【详解】
解:(1)证明:∵AE平分,,
∴∠BAE=∠DAE,∠AEB=∠AED=90°,
在△AEB和△AED中,
,
∴△AEB≌△AED(ASA)
∴BE=ED,AD=AB,
∵点F是BC的中点,
∴BF=FC,
∴EF是△BCD的中位线,
∴EF=CD=(AC-AD)=(AC-AB);
(2)解:分别延长BE、AC交于点H,
∵AE平分,,
∴∠BAE=∠DAE,∠AEB=∠AED=90°,
在△AEB和△AEH中,
,
∴△AEB≌△AEH(ASA)
∴BE=EH,AH=AB=9,
∵点F是BC的中点,
∴BF=FC,
∴EF是△BCD的中位线,
∴EF=CH=(AH-AC)=2.
【点睛】
本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
5、(1)证明见解析;(2)
【分析】
(1)由题意知,,通过得到,证明四边形BEDF平行四边形.
(2)四边形BEDF为菱形,,;设,;在中用勾股定理,解出的长,在中用勾股定理,得到的长,由得到的值.
【详解】
(1)证明:∵四边形ABCD是矩形,O是BD的中点
∴,
在和中
∴(ASA)
∴
∴四边形BEDF是平行四边形.
(2)解:∵四边形BEDF为菱形,
∴,
又∵,
∴,
设,则
在中,
∴
在中,
∴.
【点睛】
本题考察了平行四边形的判定,三角形全等,菱形的性质,勾股定理.解题的关键与难点在于对平行四边形的性质的灵活运用.
相关试卷
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课堂检测,共28页。试卷主要包含了以下分别是回收,下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试测试题,共27页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试达标测试,共28页。试卷主要包含了如图,在六边形中,若,则等内容,欢迎下载使用。