![2021-2022学年基础强化京改版八年级数学下册第十五章四边形达标测试练习题(含详解)01](http://www.enxinlong.com/img-preview/2/3/12704744/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化京改版八年级数学下册第十五章四边形达标测试练习题(含详解)02](http://www.enxinlong.com/img-preview/2/3/12704744/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化京改版八年级数学下册第十五章四边形达标测试练习题(含详解)03](http://www.enxinlong.com/img-preview/2/3/12704744/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中北京课改版第十五章 四边形综合与测试课后测评
展开京改版八年级数学下册第十五章四边形达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在平面直角坐标系中,点关于原点对称的点的坐标是( )
A. B. C. D.
2、下列图形中,不是中心对称图形的是( )
A. B. C. D.
3、如图,菱形中,,.以为圆心,长为半径画,点为菱形内一点,连,,.若,且,则图中阴影部分的面积为( )
A. B. C. D.
4、下图是文易同学答的试卷,文易同学应得( )
A.40分 B.60分 C.80分 D.100分
5、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( ).
A. B. C. D.
6、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是( )
A.180° B.220° C.240° D.260°
7、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为( )
A.7 B.6 C.4 D.8
8、下列图案中,是中心对称图形,但不是轴对称图形的是( )
A. B.
C. D.
9、如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以vcm/s的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为( )
A.2 B.4 C.4或 D.2或
10、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )
A.46.5cm B.22.5cm C.23.25cm D.以上都不对
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _____.
2、在四边形ABCD中,若AB//CD,BC_____AD,则四边形ABCD为平行四边形.
3、如图,在矩形中,,,点是线段上的一点(不与点,重合),将△沿折叠,使得点落在处,当△为等腰三角形时,的长为___________.
4、如图,在数轴上,以单位长度为边长画一个正方形,点A对应的数是1,以点A为圆心,正方形对角线AB为半径画圆,圆与数轴的交点对应的数是 _____.
5、如图,在长方形ABCD中,.在DC上找一点E,沿直线AE把折叠,使D点恰好落在BC上,设这一点为F,若的面积是54,则的面积=______________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,中,.
(1)作点A关于的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)所作的图中,连接,,连接,交于点O.求证:四边形是菱形.
2、如图,已知△ACB中,∠ACB=90°,E是AB的中点,连接EC,过点A作AD∥EC,过点C作CD∥EA,AD与CD交于点D.
(1)求证:四边形ADCE是菱形;
(2)若AB=8,∠DAE=60°,则△ACB的面积为 (直接填空).
3、在四边形ABCD中,∠A=100°,∠D=140°.
(1)如图①,若∠B=∠C,则∠B= 度;
(2)如图②,作∠BCD的平分线CE交AB于点E.若CE∥AD,求∠B的大小.
4、如图,平行四边形ABCD中,对角线AC、BD相交于点O,AB⊥AC,AB=3,AD=5,求BD的长.
5、如图,在菱形ABCD中,点E,F分别是边AB和BC上的点,且BE=BF.求证:∠DEF=∠DFE.
-参考答案-
一、单选题
1、A
【分析】
关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.
【详解】
解:点关于原点对称的点的坐标是:
故选A
【点睛】
本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.
2、C
【详解】
解:选项A是中心对称图形,故A不符合题意;
选项B是中心对称图形,故B不符合题意;
选项C不是中心对称图形,故C符合题意;
选项D是中心对称图形,故D不符合题意;
故选C
【点睛】
本题考查的是中心对称图形的识别,掌握“中心对称图形的定义判断中心对称图形”是解本题的关键,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形.
3、C
【分析】
过点P作交于点M,由菱形得,,由,得,,故可得,,根据SAS证明,求出,即可求出.
【详解】
如图,过点P作交于点M,
∵四边形ABCD是菱形,
∴,,
∵,,
∴,,
∴,,
在与中,
,
∴,
∴,
在中,,
∴,
,即,
解得:,
∴.
故选:C.
【点睛】
此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.
4、B
【分析】
分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.
【详解】
解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;
(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;
(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;
(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;
(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,
∴文易同学答对3道题,得60分,
故选:B.
【点睛】
本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键
5、C
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.
【详解】
解:A、此图形不是中心对称图形,故本选项不符合题意;
B、此图形不是中心对称图形,故此选项不符合题意;
C、此图形是中心对称图形,故此选项符合题意;
D、此图形不是中心对称图形,故此选项不符合题意.
故选:C.
【点睛】
此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.
6、C
【分析】
根据四边形内角和为360°及等边三角形的性质可直接进行求解.
【详解】
解:由题意得:等边三角形的三个内角都为60°,四边形内角和为360°,
∴;
故选C.
【点睛】
本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键.
7、A
【分析】
如图所示,连接AC,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.
【详解】
解:如图所示,连接AC,OB交于点D,
∵C是直线与y轴的交点,
∴点C的坐标为(0,2),
∵OA=4,
∴A点坐标为(4,0),
∵四边形OABC是矩形,
∴D是AC的中点,
∴D点坐标为(2,1),
当直线经过点D时,可将矩形OABC的面积平分,
由题意得平移后的直线解析式为,
∴,
∴,
故选A.
【点睛】
本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.
8、C
【分析】
根据轴对称图形和中心对称图形的定义求解即可.
【详解】
解:A.既是轴对称图形,又是中心对称图形,本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,本选项不符合题意;
C.是中心对称图形,但不是轴对称图形,本选项符合题意;
D.既是轴对称图形,又是中心对称图形,本选项不符合题意;
故选:C.
【点睛】
此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形和中心对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
9、D
【分析】
根据题意可知当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP,②当AP=BP时,△AEP≌△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.
【详解】
解:当△EAP与△PBQ全等时,有两种情况:
①当EA=PB时,△APE≌△BQP(SAS),
∵AB=10cm,AE=6cm,
∴BP=AE=6cm,AP=4cm,
∴BQ=AP=4cm;
∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,
∴点P和点Q的运动时间为:4÷2=2s,
∴v的值为:4÷2=2cm/s;
②当AP=BP时,△AEP≌△BQP(SAS),
∵AB=10cm,AE=6cm,
∴AP=BP=5cm,BQ=AE=6cm,
∵5÷2=2.5s,
∴2.5v=6,
∴v=.
故选:D.
【点睛】
本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键.
10、C
【分析】
如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,则,,,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.
【详解】
解:如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,
∴,,,
∴△DEF的周长,
同理可得:△GHI的周长,
∴第三次作中位线得到的三角形周长为,
∴第四次作中位线得到的三角形周长为
∴第三次作中位线得到的三角形周长为
∴这五个新三角形的周长之和为,
故选C.
【点睛】
本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.
二、填空题
1、720°720度
【分析】
根据多边形内角和可直接进行求解.
【详解】
解:由题意得:该正六边形的内角和为;
故答案为720°.
【点睛】
本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.
2、
【分析】
根据平行四边形的判定:两组对边分别平行的四边形是平行四边形即可解决问题.
【详解】
解:根据两组对边分别平行的四边形是平行四边形可知:
∵AB//CD,BC//AD,
∴四边形ABCD为平行四边形.
故答案为://.
【点睛】
本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
3、或
【分析】
根据题意分,,三种情况讨论,构造直角三角形,利用勾股定理解决问题.
【详解】
解:∵四边形是矩形
∴,
∵将△沿折叠,使得点落在处,
∴
,,
设,则
①当时,如图
过点作,则四边形为矩形
,
在中
在中
即
解得
②当时,如图,设交于点,
设
垂直平分
在中
即
在中,
即
联立,解得
③当时,如图,
又
垂直平分
垂直平分
此时重合,不符合题意
综上所述,或
故答案为:或
【点睛】
本题考查了矩形的性质,勾股定理,等腰三角形的性质与判定,垂直平分线的性质,分类讨论是解题的关键.
4、或.
【分析】
根据正方形的面积公式得出面积为1,根据正方形面积公式为对角线AB乘积的一半求出正方形的对角线长,利用点A的位置,得出圆与数轴的交点对应的数即可.
【详解】
解:∵以单位长度为边长画一个正方形,
∴正方形面积为1,
∴,
∴AB=,
∵点A在1的位置,
∴圆与数轴的交点对应的数为或.
故答案为或.
【点睛】
本题考查数轴上点表示数,正方形性质,算术平方根,图形旋转,掌握数轴上点表示数,正方形性质,图形旋转特征是解题关键
5、6
【分析】
根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面积公式解答即可.
【详解】
解:∵四边形ABCD是矩形
∴AB=CD=9,BC=AD
∵•AB•BF=54,
∴BF=12.
在Rt△ABF中,AB=9,BF=12,
由勾股定理得,.
∴BC=AD=AF=15,
∴CF=BC-BF=15-12=3.
设DE=x,则CE=9-x,EF=DE=x.
则x2=(9-x)2+32,
解得,x=5.
∴DE=5.
∴EC=DC-DE=9-5=4.
∴△FCE的面积=×4×3=6.
【点睛】
本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.
三、解答题
1、(1)见解析;(2)见解析
【分析】
(1)作BD的垂直平分线,再截取即可;
(2)先证明三角形全等,然后根据全等三角形的性质可得:,依据菱形的判定定理即可证明.
【详解】
(1)解:如图所示,作BD的垂直平分线,再截取,点即为所求.
(2)证明:如图所示:
∵,,
∴,
在与中,
,
∴;
∴,
又∵,
∴四边形是菱形.
【点睛】
本题考查了尺规作图和菱形的证明,解题关键是熟练运用尺规作图方法和菱形的判定定理进行作图与证明.
2、(1)见解析;(2)
【分析】
(1)由AD//CE,CD//AE ,得四边形AECD为平行四边形,根据直角三角形斜边上中线性质,得CE=AE,可知四边形ADCE是菱形;
(2)由菱形的性质可得当∠DAE=60°时,∠CAE=30°,可求BC,再根据勾股定理求出AC,最后求面积即可.
【详解】
解:(1)∵∥,∥,
∴四边形是平行四边形.
∵,是的中点,
∴,
∴四边形是菱形;
(2)∵四边形是菱形,,
∴.
∵在Rt△中,,,,
∴,
∴.
∴.
【点睛】
此题主要考查了菱形的性质和判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,勾股定理,三角形面积,能够灵活运用菱形知识解决有关问题是解题的关键.
3、(1)60;(2)40°.
【分析】
(1)根据四边形内角和为360°解决问题;
(2)由CE//AD推出∠DCE+∠D=180°,所以∠DCE=40°,根据CE平分∠BCD,推出∠BCD=80°,再根据四边形内角和为360°求出∠B度数;
【详解】
(1)∵∠A=100°,∠D=140°,
∴∠B=∠C==60°,
故答案为60;
(2)∵CE//AD,
∠DCE+∠D=180°,
∴∠DCE=40°,
∵CE平分∠BCD,
∴∠BCD=80°,
∴∠B=360°﹣(100°+140°+80°)=40°.
【点睛】
本题考查了多边形内角与外角以及平行线的性质,熟练运用多边形内角性质和平行线的性质是解题的关键.
4、
【分析】
根据平行四边形的性质可得,,勾股定理求得,,进而求得
【详解】
解:四边形是平行四边形
AB⊥AC,
在中,
在中,
【点睛】
本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.
5、见解析
【分析】
根据菱形的性质可得AB=BC=CD=AD,∠A=∠C,再由BE=BF,可推出AE=CF,即可利用SAS证明△ADE≌△CDF得到DE=DF,则∠DEF=∠DFE.
【详解】
解:∵四边形ABCD是菱形,
∴AB=BC=CD=AD,∠A=∠C,
∵BE=BF,
∴AB-BE=BC-BF,即AE=CF,
∴△ADE≌△CDF(SAS),
∴DE=DF,
∴∠DEF=∠DFE.
【点睛】
本题主要考查了菱形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,解题的关键在于能够熟练掌握菱形的性质.
北京课改版八年级下册第十五章 四边形综合与测试课时训练: 这是一份北京课改版八年级下册第十五章 四边形综合与测试课时训练,共33页。
初中数学北京课改版八年级下册第十五章 四边形综合与测试练习: 这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试练习,共27页。
2021学年第十五章 四边形综合与测试当堂检测题: 这是一份2021学年第十五章 四边形综合与测试当堂检测题,共27页。试卷主要包含了下列图形中,是中心对称图形的是,如图,M等内容,欢迎下载使用。