2020-2021学年第十五章 四边形综合与测试同步测试题
展开京改版八年级数学下册第十五章四边形专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列几何图形既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2、下列图形中,是中心对称图形的是( )
A. B.
C. D.
3、下列图案中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
4、下列图案中,是中心对称图形的是( )
A. B. C. D.
5、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是( )
A. B.
C. D.
6、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )
A.梯形 B.菱形 C.矩形 D.正方形
7、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )
A.①②③ B.②③④ C.①②④ D.①④
8、如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E,若∠1=40°,则∠2的度数为( )
A.25° B.20° C.15° D.10°
9、下列图形中不是中心对称图形的是( )
A. B. C. D.
10、下列图形中,可以看作是中心对称图形的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点O是正方形ABCD的称中心O,互相垂直的射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF;已知.
(1)以点E,O,F,D为顶点的图形的面积为________________;
(2)线段EF的最小值是_______________.
2、如图,在中,,,,为上的两个动点,且,则的最小值是________.
3、如图,平行四边形ABCD,AD=5,AB=8,点A的坐标为(-3,0)点C的坐标为______.
4、如图,以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB长度的最小值为_________.
5、将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于______.
三、解答题(5小题,每小题10分,共计50分)
1、在四边形ABCD中,∠A=100°,∠D=140°.
(1)如图①,若∠B=∠C,则∠B= 度;
(2)如图②,作∠BCD的平分线CE交AB于点E.若CE∥AD,求∠B的大小.
2、如图,在矩形中,为对角线.
(1)用尺规完成以下作图:在上找一点,使,连接,作的平分线交于点;(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,若,求的度数.
3、如图,已知△ACB中,∠ACB=90°,E是AB的中点,连接EC,过点A作AD∥EC,过点C作CD∥EA,AD与CD交于点D.
(1)求证:四边形ADCE是菱形;
(2)若AB=8,∠DAE=60°,则△ACB的面积为 (直接填空).
4、如图,在四边形ABCD中,∠ABC=∠ADC=90°,E是AC的中点,连接BD,ED,EB.求证:∠1=∠2.
5、(1)如图a,矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.
(2)如图b,如果题目中的矩形变为菱形,结论应变为什么?说明理由.
(3)如图c,如果题目中的矩形变为正方形,结论又应变为什么?说明理由.
-参考答案-
一、单选题
1、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,是中心对称图形,选项说法错误,不符合题意;
B、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;
C、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;
D、是轴对称图形,是中心对称图形,选项说法正确,符合题意;
故选D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.解题的关键是掌握轴对称图形寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
2、B
【分析】
根据中心对称图形的定义求解即可.
【详解】
解:A、不是中心对称图形,不符合题意;
B、是中心对称图形,符合题意;
C、不是中心对称图形,不符合题意;
D、不是中心对称图形,不符合题意.
故选:B.
【点睛】
此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
3、B
【详解】
A.是轴对称图形,不是中心对称图形,故不符合题意;
B. 既是轴对称图形,又是中心对称图形,故符合题意;
C.是轴对称图形,不是中心对称图形,故不符合题意;
D.既不是轴对称图形,也不是中心对称图形,故不符合题意;
故选B
【点睛】
本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
4、B
【分析】
由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可.
【详解】
解:A、C、D都是轴对称图形,只有B选项是中心对称图形.
故选:B.
【点睛】
本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合.
5、C
【分析】
根据中心对称图形的定义进行逐一判断即可.
【详解】
解:A、不是中心对称图形,故此选项不符合题意;
B、不是中心对称图形,故此选项不符合题意;
C、是中心对称图形,故此选项符合题意;
D、不是中心对称图形,故此选项不符合题意;
故选C.
【点睛】
本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
6、B
【分析】
根据题意得到,然后根据菱形的判定方法求解即可.
【详解】
解:由题意可得:,
∴四边形是菱形.
故选:B.
【点睛】
此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法.菱形的判定定理:①四条边都相等四边形是菱形;②一组邻边相等的平行四边形是菱形;③对角线垂直的平行四边形是菱形.
7、C
【分析】
利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.
【详解】
∵CM、BN分别是高
∴△CMB、△BNC均是直角三角形
∵点P是BC的中点
∴PM、PN分别是两个直角三角形斜边BC上的中线
∴
故①正确
∵∠BAC=60゜
∴∠ABN=∠ACM=90゜−∠BAC=30゜
∴AB=2AN,AC=2AM
∴AN:AB=AM:AC=1:2
即②正确
在Rt△ABN中,由勾股定理得:
故③错误
当∠ABC=60゜时,△ABC是等边三角形
∵CM⊥AB,BN⊥AC
∴M、N分别是AB、AC的中点
∴MN是△ABC的中位线
∴MN∥BC
故④正确
即正确的结论有①②④
故选:C
【点睛】
本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.
8、D
【分析】
根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.
【详解】
解:∵四边形ABCD是矩形,
∴∠ABC=90°,CD∥AB,
∴∠ABD=∠1=40°,
∴∠DBC=∠ABC-∠ABD=50°,
由折叠可得∠DB C′=∠DBC=50°,
∴∠2=∠DB C′−∠DBA=50°−40°=10°,
故选D.
【点睛】
本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.
9、B
【分析】
根据中心对称图形的概念求解.
【详解】
解:A、是中心对称图形,故本选项不合题意;
B、不是中心对称图形,故本选项符合题意;
C、是中心对称图形,故本选项不合题意;
D、是中心对称图形,故本选项不合题意.
故选:B.
【点睛】
本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
10、A
【分析】
根据中心对称图形的概念(在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,则为中心对称图形)求解即可.
【详解】
解:B、C、D三个选项的图形旋转后,均不能与原来的图形重合,不符合题意,
A选项是中心对称图形.故本选项正确.
故选:A.
【点睛】
本题考查了中心对称图形的概念,深刻理解中心对称图形的概念是解题关键.
二、填空题
1、1
【分析】
(1)连接OA、OD,根据正方形的性质和全等三角形的判定证明△OAE≌△ODF,利用全等三角形的性质得出四边形EOFD的面积等于△AOD的面积即可求解;
(2)根据全等三角形的性质证得△EOF为等腰直角三角形,则EF=OE,当OE⊥AD时OE最小,则EF最小,求解此时在OE即可解答.
【详解】
解:(1)连接OA、OD,
∵四边形ABCD是正方形,
∴OA=OD,∠AOD=90°,∠EAO=∠FDO=45°,
∴∠AOE+∠DOE=90°,
∵OE⊥OF,
∴∠DOF+∠DOE=90°,
∴∠AOE=∠DOF,
在△OAE和△ODF中,
,
∴△OAE≌△ODF(ASA),
∴S△OAE=S△ODF,
∴S四边形EOFD = S△ODE+S△ODF= S△ODE+S△OAE= S△AOD= S正方形ABCD,
∵AD=2,
∴S四边形EOFD= ×4=1,
故答案为:1;
(2)∵△OAE≌△ODF,
∴OE=OF,
∴△EOF为等腰直角三角形,则EF=OE,
当OE⊥AD时OE最小,即EF最小,
∵OA=OD,∠AOD=90°,
∴OE=AD=1,
∴EF的最小值,
故答案为:.
【点睛】
本题考查正方形的性质、全等三角形的判定与性质、等角的余角相等、等腰直角三角形的判定与性质、垂线段最短,熟练掌握相关知识的联系与运用是解答的关键.
2、
【分析】
过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A′,连接AA′交BC于点O,连接A′M,三点D、M、A′共线时,最小为A′D的长,利用勾股定理求A′D的长度即可解决问题.
【详解】
解:过点A作AD//BC,且AD=MN,连接MD,
则四边形ADMN是平行四边形,
∴MD=AN,AD=MN,
作点A关于BC的对称点A′,连接A A′交BC于点O,连接A′M,
则AM=A′M,
∴AM+AN=A′M+DM,
∴三点D、M、A′共线时,A′M+DM最小为A′D的长,
∵AD//BC,AO⊥BC,
∴∠DA=90°,
∵,,,
∴BC=
BO=CO=AO=,
∴,
在Rt△AD中,由勾股定理得:
D=
∴的最小是值为:,
故答案为:
【点睛】
本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键.
3、(8,4)
【分析】
先根据勾股定理得到OD的长,即可得到点D的坐标,再根据平行四边形的性质和平行x轴两点坐标特征即可得到点C的坐标.
【详解】
解:∵点A的坐标为(-3,0),
在Rt△ADO中,AD=5, AO=3,,
∴OD==,
∴D(0,4),
∵平行四边形ABCD,
∴AB=CD=8,AB∥CD,
∵AB在x轴上,
∴CD∥x轴,
∴C、D两点的纵坐标相同,
∴C(8,4) .
故答案为(8,4).
【点睛】
本题考查平行四边形性质,勾股定理,平行x轴两点坐标特征,解答本题的关键是熟练掌握平行于x轴的直线上的点的纵坐标相同,平行于y轴的直线上的点的横坐标相同.
4、
【分析】
根据正方形的对角线平分一组对角线可得∠OCD=∠ODB=45°,正方形的对角线互相垂直平分且相等可得∠COD=90°,OC=OD,然后根据同角的余角相等求出∠COA=∠DOB,再利用“ASA”证明△COA和△DOB全等,根据全等三角形对应边相等可得OA=OB,从而得到△AOB是等腰直角三角形,再根据垂线段最短可得OA⊥CD时,OA最小,然后求出OA,再根据等腰直角三角形的斜边等于直角边的倍解答.
【详解】
解:如图,
∵四边形CDEF是正方形,
,
,
,
在与中,
,
,
∴OA=OB,
∵∠AOB=90°,
∴△AOB是等腰直角三角形,
由勾股定理得: ,
要使AB最小,只要OA取最小值即可,
根据垂线段最短,OA⊥CD时,OA最小,
∵正方形CDEF,
∴FC⊥CD,OD=OF,
∴CA=DA,
∴OA=,
∴AB=.
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,垂线段最短,勾股定理,熟记各性质并求出三角形全等,然后求出△AOB是等腰直角三角形是解题的关键.
5、
【分析】
利用三角形的内角和定理以及折叠的性质,求出,,利用四边形内角和为,即可求出∠2.
【详解】
解:在中,,
在中,,
由折叠性质可知: ,
四边形的内角和为,
,
,,
,
,,且∠1=85°,
,
故答案为:.
【点睛】
本题主要是考查了三角形和四边形的内角和定理,熟练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度数,这是解决该题的关键.
三、解答题
1、(1)60;(2)40°.
【分析】
(1)根据四边形内角和为360°解决问题;
(2)由CE//AD推出∠DCE+∠D=180°,所以∠DCE=40°,根据CE平分∠BCD,推出∠BCD=80°,再根据四边形内角和为360°求出∠B度数;
【详解】
(1)∵∠A=100°,∠D=140°,
∴∠B=∠C==60°,
故答案为60;
(2)∵CE//AD,
∠DCE+∠D=180°,
∴∠DCE=40°,
∵CE平分∠BCD,
∴∠BCD=80°,
∴∠B=360°﹣(100°+140°+80°)=40°.
【点睛】
本题考查了多边形内角与外角以及平行线的性质,熟练运用多边形内角性质和平行线的性质是解题的关键.
2、(1)图形见解析;(2)
【分析】
(1)利用尺规根据题意即可完成作图;
(2)结合(1)根据等腰三角形的性质和三角形外角定理可得的度数.
【详解】
(1)如图,点E和点F即为所求;
(2)∵,∠ABD=68°,
∴∠AEB=∠AEB=68°
∴∠EAB=180°-68°-68°=44°,
∴∠EAD=90°-44°=46°,
∵AF平分∠DAE,
∴∠FAE=∠DAE=23°,
∴
【点睛】
题考查了尺规作图-作角平分线,矩形的性质,熟练掌握5种基本作图是解决此类问题的关键.
3、(1)见解析;(2)
【分析】
(1)由AD//CE,CD//AE ,得四边形AECD为平行四边形,根据直角三角形斜边上中线性质,得CE=AE,可知四边形ADCE是菱形;
(2)由菱形的性质可得当∠DAE=60°时,∠CAE=30°,可求BC,再根据勾股定理求出AC,最后求面积即可.
【详解】
解:(1)∵∥,∥,
∴四边形是平行四边形.
∵,是的中点,
∴,
∴四边形是菱形;
(2)∵四边形是菱形,,
∴.
∵在Rt△中,,,,
∴,
∴.
∴.
【点睛】
此题主要考查了菱形的性质和判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,勾股定理,三角形面积,能够灵活运用菱形知识解决有关问题是解题的关键.
4、见解析
【分析】
根据直角三角形斜边上的中线等于斜边的一半和等腰三角形的性质即可证明.
【详解】
解:∵∠ABC=∠ADC=90°,
∴△ABC和△ADC是直角三角形,
∵点E是AC的中点,
∴EB=AC,ED=AC,
∴EB=ED,
∴∠1=∠2.
【点睛】
本题考查了直角三角形斜边上的中线、等腰三角形的判定与性质,解决本题的关键是掌握直角三角形斜边上的中线等于斜边的一半.
5、(1)四边形CODP是菱形,理由见解析;(2)四边形CODP是矩形,理由见解析;(3)四边形CODP是正方形,理由见解析
【分析】
(1)先证明四边形CODP是平行四边形,再由矩形的性质可得OD=OC,即可证明平行四边形OCDP是菱形;
(2)先证明四边形CODP是平行四边形,再由菱形的性质可得∠DOC=90°,即可证明平行四边形OCDP是矩形;
(3)先证明四边形CODP是平行四边形,再由正方形的性质可得BD⊥AC,DO=OC,即可证明平行四边形OCDP是正方形;
【详解】
解:(1)四边形CODP是菱形,理由如下:
∵DP∥OC,且DP=OC,
∴四边形CODP是平行四边形,
又∵四边形ABCD是矩形,
∴OD=OC,
∴平行四边形OCDP是菱形;
(2)四边形CODP是矩形,理由如下:
∵DP∥OC,且DP=OC,
∴四边形CODP是平行四边形,
又∵四边形ABCD是菱形,
∴BD⊥AC,
∴∠DOC=90°,
∴平行四边形OCDP是矩形;
(3)四边形CODP是正方形,理由如下:
∵DP∥OC,且DP=OC,
∴四边形CODP是平行四边形,
又∵四边形ABCD是正方形,
∴BD⊥AC,DO=OC,
∴∠DOC=90°,平行四边形CODP是菱形,
∴菱形OCDP是正方形.
【点睛】
本题主要考查了矩形的性质与判定,菱形的性质与判定,正方形的性质与判定,解题的关键在于能够熟练掌握特殊平行四边形的性质与判定条件.
数学八年级下册第十五章 四边形综合与测试达标测试: 这是一份数学八年级下册第十五章 四边形综合与测试达标测试,共28页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十五章 四边形综合与测试课时训练: 这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时训练,共26页。试卷主要包含了以下分别是回收等内容,欢迎下载使用。
北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题: 这是一份北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共23页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。