初中数学北京课改版八年级下册第十五章 四边形综合与测试课后作业题
展开京改版八年级数学下册第十五章四边形定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是( )
A.cm B.2cm C.1cm D.2cm
2、下列图形中,不是中心对称图形的是( )
A. B. C. D.
3、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为( )
A.180° B.360°
C.540° D.不能确定
4、下列图形中,既是中心对称图形又是轴对称图形的有几个( )
A.1个 B.2个 C.3个 D.4个
5、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为( )
A.20º B.25º C.30º D.35º
6、下面图案中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
7、下列图形中,是中心对称图形的是( )
A. B.
C. D.
8、如图,四边形ABCD是平行四边形,下列结论中错误的是( )
A.当▱ABCD是矩形时,∠ABC=90° B.当▱ABCD是菱形时,AC⊥BD
C.当▱ABCD是正方形时,AC=BD D.当▱ABCD是菱形时,AB=AC
9、下列图形中,既是中心对称图形,又是轴对称图形的个数是( )
A.1 B.2 C.3 D.4
10、下列图案中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、正方形的一条对角线长为4,则这个正方形面积是_________.
2、如图,正方形ABCD的边长为做正方形,使A,B,C,D是正方形各边的中点;做正方形,使是正方形各边的中点……以此类推,则正方形的边长为__________.
3、将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于______.
4、如图,在长方形ABCD中,.在DC上找一点E,沿直线AE把折叠,使D点恰好落在BC上,设这一点为F,若的面积是54,则的面积=______________.
5、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在中,对角线AC、BD交于点O,AB=10,AD=8,AC⊥BC,求
(1)的面积;
(2)△AOD的周长.
2、如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.
(1)求证:△ABE≌△CDF;
(2)连接BD,若∠1=32°,∠ADB=22°,请直接写出当∠ABE= °时,四边形BFDE是菱形.
3、如图1,在平面直角坐标系中,直线l1:y=kx+b(k≠0)与x轴交于点A,与y轴交于点B(0,6),直线l2与x轴交于点C,与直线l1交于D(m,3),OC=2OA,tan∠BAO=.
(1)求直线l2的解析式.
(2)在线段DC上是否存在点P,使△DAP的面积为?若存在,求出点P的坐标,若不存在,请说明理由.
(3)如图2,连接OD,将△ODB沿直线AB翻折得到△O'DB.若点M为直线AB上一动点,在平面内是否存在点N,使得以B、O′、M、N为顶点的四边形为菱形,若存在,直接写出N的坐标,若不存在,请说明理由.
4、如图,△AOB是等腰直角三角形.
(1)若A(﹣4,1),求点B的坐标;
(2)AN⊥y轴,垂足为N,BM⊥y轴,垂足为点M,点P是AB的中点,连PM,求∠PMO度数;
(3)在(2)的条件下,点Q是ON的中点,连PQ,求证:PQ⊥AM.
5、如图,是的中位线,延长到,使,连接.
求证:.
-参考答案-
一、单选题
1、B
【分析】
由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.
【详解】
解:∵菱形ABCD的周长为8cm,
∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴AC=AB=2cm,
∴OA=1(cm),
在Rt△AOB中,由勾股定理得:OB===(cm),
∴BD=2OB=2(cm),
故选:B.
【点睛】
此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.
2、C
【详解】
解:选项A是中心对称图形,故A不符合题意;
选项B是中心对称图形,故B不符合题意;
选项C不是中心对称图形,故C符合题意;
选项D是中心对称图形,故D不符合题意;
故选C
【点睛】
本题考查的是中心对称图形的识别,掌握“中心对称图形的定义判断中心对称图形”是解本题的关键,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形.
3、B
【分析】
设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360°,即可求解.
【详解】
解:设BE与DF交于点M,BE与AC交于点N,
∵ ,
∴ ,
∵,
∴ .
故选:B
【点睛】
本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.
4、A
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;
第二个图形是轴对称图形,不是中心对称图形,不符合题意;
第三个图形是轴对称图形,不是中心对称图形,不符合题意;
第四个图形既是轴对称图形,也是中心对称图形,符合题意;
既是中心对称图形又是轴对称图形的只有1个,
故选:A.
【点睛】
本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
5、C
【分析】
依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.
【详解】
∵ADBC,
∴∠AEB=∠DAE=∠B=80°,
∴AE=AB=AD,
在三角形AED中,AE=AD,∠DAE=80°,
∴∠ADE=50°,
又∵∠B=80°,
∴∠ADC=80°,
∴∠CDE=∠ADC-∠ADE=30°.
故选:C.
【点睛】
考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.
6、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A.不是轴对称图形,也不是中心对称图形,故此选项不合题意;
B.是轴对称图形,不是中心对称图形,故此选项不合题意;
C.不是轴对称图形,是中心对称图形,故此选项不合题意;
D.既是轴对称图形又是中心对称图形,故此选项符合题意.
故选:D.
【点睛】
本题考查了轴对称图形和中心对称图形;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则此图形是轴对称图形,这条直线叫做对称轴;如果一个图形绕某一固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,固定的点叫对称中心;理解两个概念是解答本题的关键.
7、A
【分析】
把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.
【详解】
解:选项A中的图形是中心对称图形,故A符合题意;
选项B中的图形不是中心对称图形,故B不符合题意;
选项C中的图形不是中心对称图形,故C不符合题意;
选项D中的图形不是中心对称图形,故D不符合题意;
故选A
【点睛】
本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.
8、D
【分析】
由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.
【详解】
解:当▱ABCD是矩形时,∠ABC=90°,正确,故A不符合题意;
当▱ABCD是菱形时,AC⊥BD,正确,故B不符合题意;
当▱ABCD是正方形时,AC=BD,正确,故C不符合题意;
当▱ABCD是菱形时,AB=BC,故D符合题意;
故选D
【点睛】
本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.
9、B
【分析】
根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解
【详解】
第一个图形是中心对称图形,又是轴对称图形,
第二个图形是中心对称图形,又是轴对称图形,
第三个图形不是中心对称图形,是轴对称图形,
第四个图形不是中心对称图形,是轴对称图形,
综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形.
故选:B.
【点睛】
点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
10、B
【详解】
A.是轴对称图形,不是中心对称图形,故不符合题意;
B. 既是轴对称图形,又是中心对称图形,故符合题意;
C.是轴对称图形,不是中心对称图形,故不符合题意;
D.既不是轴对称图形,也不是中心对称图形,故不符合题意;
故选B
【点睛】
本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
二、填空题
1、8
【分析】
正方形边长相等设为,对角线长已知,利用勾股定理求解边长的平方,即为正方形的面积.
【详解】
解:设边长为,对角线为
故答案为:.
【点睛】
本题考察了正方形的性质以及勾股定理.解题的关键在于求解正方形的边长.
2、
【分析】
利用正方形ABCD的及勾股定理,求出的长,再根据勾股定理求出和的长,找出规律,即可得出正方形的边长.
【详解】
解:∵A,B,C,D是正方形各边的中点
∴,
∵正方形ABCD的边长为,即AB=,
∴,解得:,
∴==2,
同理==2,
==4 …,
∴,
∴=,
∴的边长为
故答案为:.
【点睛】
本题考查了正方形性质、勾股定理的应用,解此题的关键是能根据计算结果得出规律,本题具有一定的代表性,是一道比较好的题目.
3、
【分析】
利用三角形的内角和定理以及折叠的性质,求出,,利用四边形内角和为,即可求出∠2.
【详解】
解:在中,,
在中,,
由折叠性质可知: ,
四边形的内角和为,
,
,,
,
,,且∠1=85°,
,
故答案为:.
【点睛】
本题主要是考查了三角形和四边形的内角和定理,熟练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度数,这是解决该题的关键.
4、6
【分析】
根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面积公式解答即可.
【详解】
解:∵四边形ABCD是矩形
∴AB=CD=9,BC=AD
∵•AB•BF=54,
∴BF=12.
在Rt△ABF中,AB=9,BF=12,
由勾股定理得,.
∴BC=AD=AF=15,
∴CF=BC-BF=15-12=3.
设DE=x,则CE=9-x,EF=DE=x.
则x2=(9-x)2+32,
解得,x=5.
∴DE=5.
∴EC=DC-DE=9-5=4.
∴△FCE的面积=×4×3=6.
【点睛】
本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.
5、720°720度
【分析】
根据多边形内角和可直接进行求解.
【详解】
解:由题意得:该正六边形的内角和为;
故答案为720°.
【点睛】
本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.
三、解答题
1、(1)48(2)
【分析】
(1)利用勾股定理先求出高AC,故可求解面积;
(2)根据平行四边形的性质求出AO,再利用勾股定理求出OB的长,故可求解.
【详解】
解:(1)∵四边形ABCD是平行四边形,且AD=8
∴BC=AD=8
∵AC⊥BC
∴∠ACB=90°
在Rt△ABC中,由勾股定理得AC2=AB2-BC2
∴
∴
(2)∵四边形ABCD是平行四边形,且AC=6
∴
∵∠ACB=90°,BC=8
∴,
∴
∴.
【点睛】
此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用.
2、(1)见解析;(2)12
【分析】
(1)由“SAS”可证△ABE≌△CDF;
(2)通过证明BE=DE,可得结论.
【详解】
证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠BCD,
∴∠1=∠DCF,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS);
(2)当∠ABE=10°时,四边形BFDE是菱形,
理由如下:∵△ABE≌△CDF,
∴BE=DF,AE=CF,
∵四边形ABCD是平行四边形,
∴AD=BC,
∴AD+AE=BC+CF,
∴BF=DE,
∴四边形BFDE是平行四边形,
∵∠1=32°,∠ADB=22°,
∴∠ABD=∠1-∠ADB=10°,
∵∠ABE=12°,
∴∠DBE=22°,
∴∠DBE=∠ADB=22°,
∴BE=DE,
∴平行四边形BFDE是菱形,
故答案为:12.
【点睛】
本题考查了菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,掌握菱形的判定是解题的关键.
3、(1);(2)(,2);(3)N点坐标为(,)、(,)、(0,0)或(,6).
【分析】
(1)由y轴截距以及正切值,可求出,则 A点坐标为(,0),因为OC=2OA所以C点坐标为(,0 ),将D(m,3)代入,得D点坐标为( ,3),再将D(,3),C(,0 )代入,求得.
(2)设P点坐标为(a,),由题意可知△DAP为,△DAP的高为A点到直线CD的距离,过 A点做DC平行线交y轴于点E,由可知 ,将A(,0)代入,解得 ,故两线间的距离为,△DAP的高为,由三角形面积= 底×高,有2,故有,进而即可求解;
(3)如图所示,共有4个点满足条件,证明见解析.
【详解】
(1)∵B(0,6),tan∠BAO=
∴
令y=0,得A点坐标为(,0)
∵OC=2OA
∴C点坐标为(,0)
将D(m,3)代入
∴D点坐标为(,3)
将D(,3),C(,0)代入有
得
∴
(2)设P点坐标为(a,),过A点做DC平行线交y轴于点E
∵AE//DC
∴
∴
将A(,0)代入
得b=2
∴
故和间的距离为,即△DAP的高为
由三角形面积=底×高有
有2
故有
化简得
解得a=0(舍去)或a=,
故P点坐标为(,2).
(3)
如图所示,可知BO’=6,在B点上方截取BM1=6,过M1做BO’平行线,过O’做BM1平行线,两平行线相交于N1.
由作图步骤可知▱BO’N1M1为菱形,
由菱形性质可得N1坐标为(,).
如图所示,可知BO’=6,在B点下方截取BM2=6,过M2做BO’平行线,过O’做BM2平行线,两平行线相交于N2.
由作图步骤可知▱BO’N2M2为菱形,
由菱形性质可得N2坐标为(,).
如图所示,可知BO’=6,在B点下方截取BN3=6,过N3做BO’平行线,过O’做BN3平行线,两平行线相交于M3.
由作图步骤可知▱B N3M3O’为菱形,
由菱形性质可得N3坐标为(0,0).
如图所示,可知BO’=6,令BO’做菱形其中一条对角线,过O’做x轴平行线交直线AB于点M4,过B点做O’M4平行线,过O’点做直线AB平行线,两平行线相交于N4.
由作图步骤可知▱B M4O’N4为菱形,
由菱形性质可得N4坐标为(,6).
综上所述N点坐标为(,)、(,)、(0,0)或(,6).
【点睛】
本题考查了一次函数的图象及其性质,菱形的判定,熟练掌握并应用菱形的性质是解第三问的关键:⑴菱形的四条边都相等;⑵菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.⑶菱形具有平行四边形的一切性质.⑷菱形是轴对称图形,对称轴是两条对角线所在的直线.⑸利用菱形的性质可证线段相等,角相等.
4、(1)(1,4);(2)45°;(3)见解析
【分析】
(1)过点A作AE⊥x轴于E,过点B作BF⊥x轴于F,证明△OAE≌△BOF得到OF=AE,BF=OE,再由点A的坐标为(-4,1),得到OF=AE=1,BF=OE=4,则点B的坐标为(1,4);
(2)延长MP与AN交于H,证明△APH≌△BPM得到AH=BM,再由A点坐标为(-4,1),B点坐标为(1,4),得到AN=4,OM=4,BM=1,ON=1,则HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;
(3)连接OP,AM,取BM中点G,连接GP,则GP是△ABM的中位线,AM∥GP,证明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,则PQ⊥PG,即PG⊥AM;
【详解】
解:(1)如图所示,过点A作AE⊥x轴于E,过点B作BF⊥x轴于F,
∴∠AEO=∠OFB=90°,
∴∠AOE+∠OAE=90°,
又∵∠AOB=90°,
∴∠AOE+∠BOF=90°,
∴∠OAE=∠BOF,
∵AO=OB,
∴△OAE≌△BOF(AAS),
∴OF=AE,BF=OE,
∵点A的坐标为(-4,1),
∴OF=AE=1,BF=OE=4,
∴点B的坐标为(1,4);
(2)如图所示,延长MP与AN交于H,
∵AH⊥y轴,BM⊥y轴,
∴BM∥AN,
∴∠MBP=∠HAP,∠AHP=∠BMP,
∵点P是AB的中点,
∴AP=BP,
∴△APH≌△BPM(AAS),
∴AH=BM,
∵A点坐标为(-4,1),B点坐标为(1,4),
∴AN=4,OM=4,BM=1,ON=1,
∴HN=AN-AH=AN-BM=3,MN=OM-ON=3,
∴HN=MN,
∴∠NHM=∠NMH=45°,即∠PMO=45°;
(3)如图所示,连接OP,AM,取BM中点G,连接GP,
∴GP是△ABM的中位线,
∴AM∥GP,
∵Q是ON的中点,G是BM的中点,ON=BM=1,
∴,
∵P是AB中点,△AOB是等腰直角三角形,∠AOB=90°,
∴,∠OAB=∠OBA=45°,∠OPB=90°
∴∠PAO=∠POA=45°,
∴∠POB=45°,
∵∠NAO+∠NOA=90°,∠NOA+∠BON=90°,
∴∠NAO=∠BON,
∵∠OAB=∠POB=45°,
∴∠BAN+∠NAO=∠POQ+∠BON,即∠BAN=∠POQ,
由(2)得∠GBP=∠BAN,
∴∠GBP=∠QOP,
∴△PQO≌△PGB(SAS),
∴∠OPQ=∠BPG,
∵∠OPQ+∠BPQ=90°,
∴∠BPG+∠BPQ=90°,即∠GPQ=90°,
∴PQ⊥PG,
∴PG⊥AM;
【点睛】
本题主要考查了坐标与图形,全等三角形的性质与判定,三角形中位线定理,等腰直角三角形的性质与判定等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
5、见解析
【分析】
由已知条件可得DF=AB及DF∥AB,从而可得四边形ABFD为平行四边形,则问题解决.
【详解】
∵是的中位线
∴DE∥AB,,AD=DC
∴DF∥AB
∵EF=DE
∴DF=AB
∴四边形ABFD为平行四边形
∴AD=BF
∴BF=DC
【点睛】
本题主要考查了平行四边形的判定与性质、三角形中位线的性质定理,掌握它们是解答本题的关键.当然本题也可以用三角形全等的知识来解决.
初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题: 这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共30页。试卷主要包含了下列图案中,是中心对称图形的是,下列图形中不是中心对称图形的是,下列∠A等内容,欢迎下载使用。
初中北京课改版第十五章 四边形综合与测试练习: 这是一份初中北京课改版第十五章 四边形综合与测试练习,共33页。
北京课改版八年级下册第十五章 四边形综合与测试同步训练题: 这是一份北京课改版八年级下册第十五章 四边形综合与测试同步训练题,共23页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。