终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度京改版八年级数学下册第十五章四边形重点解析练习题(名师精选)

    立即下载
    加入资料篮
    2021-2022学年度京改版八年级数学下册第十五章四边形重点解析练习题(名师精选)第1页
    2021-2022学年度京改版八年级数学下册第十五章四边形重点解析练习题(名师精选)第2页
    2021-2022学年度京改版八年级数学下册第十五章四边形重点解析练习题(名师精选)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册第十五章 四边形综合与测试课时练习

    展开

    这是一份数学八年级下册第十五章 四边形综合与测试课时练习,共27页。试卷主要包含了平行四边形中,,则的度数是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形重点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )

    A.2.5 B.2 C. D.
    2、下列图案中,是中心对称图形,但不是轴对称图形的是( )
    A. B.
    C. D.
    3、下面图案中既是轴对称图形又是中心对称图形的是(  )
    A. B. C. D.
    4、一个多边形每个外角都等于36°,则这个多边形是几边形( )
    A.7 B.8 C.9 D.10
    5、如图,在矩形ABCD中,点O为对角线BD的中点,过点O作线段EF交AD于F,交BC于E,OB=EB,点G为BD上一点,满足EG⊥FG,若∠DBC=30°,则∠OGE的度数为(  )

    A.30° B.36° C.37.5° D.45°
    6、平行四边形中,,则的度数是( )
    A. B. C. D.
    7、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为(  )

    A.7 B.6 C.4 D.8
    8、下列几何图形既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    9、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是(  )
    A.7 B.8 C.9 D.10
    10、下列图形中,既是中心对称图形又是轴对称图形的有几个(  )

    A.1个 B.2个 C.3个 D.4个
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、若一个多边形的一条对角线把它分成两个四边形,则这个多边形的内角和是_____度.
    2、一个多边形的内角和为1080°,则它是______边形.
    3、判断:
    (1)菱形的对角线互相垂直且相等(________)
    (2)菱形的对角线把菱形分成四个全等的直角三角形(________)
    4、如图,在平行四边形ABCD中,,E、F分别在CD和BC的延长线上,,,则______.


    5、如图,在中,,,,为上的两个动点,且,则的最小值是________.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图1,矩形ABCD中,AB=9,AD=12,点G在CD上,且DG=5,点P从点B出发,以1单位每秒的速度在BC边上向点C运动,设点P的运动时间为x秒.

    (1)△APG的面积为y,求y关于x的函数关系式,并求y=34时x的值;
    (2)在点P从B向C运动的过程中,是否存在使AP⊥GP的时刻?若存在,求出x的值,若不存在,请说明理由;
    (3)如图2,M,N分别是AP、PG的中点,在点P从B向C运动的过程中,线段MN所扫过的图形是什么形状   ,并直接写出它的面积   .
    2、综合与实践
    (1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为    .

    (2)如图2,在四边形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.
    (3)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN的数量关系为    .
    3、如图,在△ABC中,点D,E分别是AC,AB的中点,点F是CB延长线上的一点,且CF=3BF,连接DB,EF.
    (1)求证:四边形DEFB是平行四边形;
    (2)若∠ACB=90°,AC=12cm,DE=4cm,求四边形DEFB的周长.

    4、如图,在长方形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,将∠B沿直线AE折叠,使点B落在点处.

    (1)如图1,当点E与点C重合时,与AD交于点F,求证:FA=FC;
    (2)如图2,当点E不与点C重合,且点在对角线AC上时,求CE的长.
    5、如图,已知正方形中,点是边延长线上一点,连接,过点作,垂足为点,与交于点.
    (1)求证:;
    (2)若,,求 BG的长.


    -参考答案-
    一、单选题
    1、D
    【分析】
    利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.
    【详解】
    解:四边形OABC是矩形,

    在中,由勾股定理可知:,

    弧长为,故在数轴上表示的数为,
    故选:.
    【点睛】
    本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.
    2、C
    【分析】
    根据轴对称图形和中心对称图形的定义求解即可.
    【详解】
    解:A.既是轴对称图形,又是中心对称图形,本选项不符合题意;
    B.既是轴对称图形,又是中心对称图形,本选项不符合题意;
    C.是中心对称图形,但不是轴对称图形,本选项符合题意;
    D.既是轴对称图形,又是中心对称图形,本选项不符合题意;
    故选:C.
    【点睛】
    此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形和中心对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
    3、D
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A.不是轴对称图形,也不是中心对称图形,故此选项不合题意;
    B.是轴对称图形,不是中心对称图形,故此选项不合题意;
    C.不是轴对称图形,是中心对称图形,故此选项不合题意;
    D.既是轴对称图形又是中心对称图形,故此选项符合题意.
    故选:D.
    【点睛】
    本题考查了轴对称图形和中心对称图形;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则此图形是轴对称图形,这条直线叫做对称轴;如果一个图形绕某一固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,固定的点叫对称中心;理解两个概念是解答本题的关键.
    4、D
    【分析】
    根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.
    【详解】
    解:∵360°÷36°=10,
    ∴这个多边形的边数是10.
    故选D.
    【点睛】
    本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.
    5、C
    【分析】
    根据矩形和平行线的性质,得;根据等腰三角形和三角形内角和性质,得;根据全等三角形性质,通过证明,得;根据直角三角形斜边中线、等腰三角形、三角形内角和性质,推导得,再根据余角的性质计算,即可得到答案.
    【详解】
    ∵矩形ABCD


    ∵OB=EB,


    ∵点O为对角线BD的中点,

    和中



    ∵EG⊥FG,即



    故选:C.
    【点睛】
    本题考查了矩形、平行线、全等三角形、等腰三角形、三角形内角和、直角三角形的知识;解题的关键是熟练掌握矩形、全等三角形、等腰三角形、直角三角形斜边中线的性质,从而完成求解.
    6、B
    【分析】
    根据平行四边形对角相等,即可求出的度数.
    【详解】
    解:如图所示,

    ∵四边形是平行四边形,
    ∴,
    ∴,
    ∴.
    故:B.
    【点睛】
    本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.
    7、A
    【分析】
    如图所示,连接AC,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.
    【详解】
    解:如图所示,连接AC,OB交于点D,
    ∵C是直线与y轴的交点,
    ∴点C的坐标为(0,2),
    ∵OA=4,
    ∴A点坐标为(4,0),
    ∵四边形OABC是矩形,
    ∴D是AC的中点,
    ∴D点坐标为(2,1),
    当直线经过点D时,可将矩形OABC的面积平分,
    由题意得平移后的直线解析式为,
    ∴,
    ∴,
    故选A.

    【点睛】
    本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.
    8、D
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、不是轴对称图形,是中心对称图形,选项说法错误,不符合题意;
    B、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;
    C、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;
    D、是轴对称图形,是中心对称图形,选项说法正确,符合题意;
    故选D.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念.解题的关键是掌握轴对称图形寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    9、D
    【分析】
    根据多边形外角和定理求出正多边形的边数.
    【详解】
    ∵正多边形的每一个外角都等于36°,
    ∴正多边形的边数==10.
    故选:D.
    【点睛】
    本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.
    10、A
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;
    第二个图形是轴对称图形,不是中心对称图形,不符合题意;
    第三个图形是轴对称图形,不是中心对称图形,不符合题意;
    第四个图形既是轴对称图形,也是中心对称图形,符合题意;
    既是中心对称图形又是轴对称图形的只有1个,
    故选:A.
    【点睛】
    本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    二、填空题
    1、720
    【分析】
    根据一个多边形被一条对角线分成两个四边形,可得多边形的边数,根据多边形的内角和定理,可得答案.
    【详解】
    解:由题意,得
    两个四边形有一条公共边,得
    多边形是,
    由多边形内角和定理,得

    故答案为:720.
    【点睛】
    本题考查了多边形的对角线,利用了多边形内角和定理,解题的关键是注意对角线是两个四边形的公共边.
    2、八
    【分析】
    根据多边形的内角和公式求解即可.n边形的内角的和等于: (n大于等于3且n为整数).
    【详解】
    解:设该多边形的边数为n,
    根据题意,得,
    解得,
    ∴这个多边形为八边形,
    故答案为:八.
    【点睛】
    此题考查了多边形的内角和,解题的关键是熟练掌握多边形的内角和公式.
    3、× √
    【分析】
    根据菱形的性质,即可求解.
    【详解】
    解:(1)菱形的对角线互相垂直且平分;
    (2)菱形的对角线把菱形分成四个全等的直角三角形.
    故答案为:(1)×;(2)√
    【点睛】
    本题主要考查了菱形的性质,熟练掌握菱形的对角线互相垂直且平分是解题的关键.
    4、8
    【分析】
    证明四边形ABDE是平行四边形,得到DE=CD=,, 过点E作EH⊥BF于H,证得CH=EH,利用勾股定理求出EH,再根据30度角的性质求出EF.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴,AB=CD,
    ∵,
    ∴四边形ABDE是平行四边形,
    ∴DE=CD=,,
    过点E作EH⊥BF于H,
    ∵,
    ∴∠ECH=,
    ∴CH=EH,
    ∵,,
    ∴CH=EH=4,
    ∵∠EHF=90°,,
    ∴EF=2EH=8,
    故答案为:8.

    【点睛】
    此题考查了平行四边形的判定及性质,勾股定理,直角三角形30度角的性质,熟记各知识点并应用解决问题是解题的关键.
    5、
    【分析】
    过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A′,连接AA′交BC于点O,连接A′M,三点D、M、A′共线时,最小为A′D的长,利用勾股定理求A′D的长度即可解决问题.
    【详解】
    解:过点A作AD//BC,且AD=MN,连接MD,

    则四边形ADMN是平行四边形,
    ∴MD=AN,AD=MN,
    作点A关于BC的对称点A′,连接A A′交BC于点O,连接A′M,
    则AM=A′M,
    ∴AM+AN=A′M+DM,
    ∴三点D、M、A′共线时,A′M+DM最小为A′D的长,
    ∵AD//BC,AO⊥BC,
    ∴∠DA=90°,
    ∵,,,
    ∴BC=
    BO=CO=AO=,
    ∴,
    在Rt△AD中,由勾股定理得:
    D=
    ∴的最小是值为:,
    故答案为:
    【点睛】
    本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键.
    三、解答题
    1、(1)y=-2.5x+54,x=8;(2)存在,x=6;(3)平行四边形;15.
    【分析】
    (1)PB=x,PC=12-x,然后依据△APG的面积=矩形的面积-三个直角三角形的面积可得到y与x的函数关系式,然后将y=34代入函数关系式可求得x的值;
    (2)先依据勾股定理求得PA、PG、AG的长,然后依据勾股定理的逆定理列出关于x的方程,从而可求得x的值;
    (3)确定出点P分别与点B和点C重合时,点M、N的位置,然后依据三角形的中位线定理可证明M1M2∥N1N2,N1N2=M1M2,从而可判断出MN扫过区域的形状,然后依据平行四边形的面积公式求解即可.
    【详解】
    解:(1)∵四边形ABCD为矩形,
    ∴DC=AB=9,AD=BC=12.
    ∵DG=5,
    ∴GC=4.
    ∵PB=x,PC=12-x,
    ∴y=9×12-×9×x-×4×(12-x)-×5×12,整理得:y=-2.5x+54.
    当y=34时,-2.5x+54=34,解得x=8;
    (2)存在.
    ∵PB=x,PC=12-x,AD=12,DG=5,
    ∴PA2=AB2+BP2=81+x2,PG2=PC2+GC2=(12-x)2+16,AG2=AD2+DG2=169.
    ∵当AG2=AP2+PG2时,AP⊥PG,
    ∴81+x2+(12-x)2+16=169,整理得:x2-12x+36=0,配方得:(x-6)2=0,
    解得:x=6;
    (3)如图所示:

    ∵当点P与点B重合时,点M位于M1处,点N位于点N1处,
    ∴M1为AB的中点,点N1位GB的中点.
    ∵当点P与点C重合时,点M位于M2处,点N位于点N2处,
    ∴M2为AC的中点,点N2位CG的中点.
    ∴M1M2∥BC,M1M2=BC,N1N2∥BC,N1N2=BC.
    ∴M1M2∥N1N2,N1N2=M1M2.
    ∴四边形M1M2N2N1为平行四边形.
    ∴MN扫过的区域为平行四边形.
    S=BC•(AB-CG)=6×2.5=15,
    故答案为:平行四边形;15.
    【点睛】
    本题主要考查了列函数关系式、三角形的面积公式、三角形的中位线定理、平行四边形的判定和性质、勾股定理的应用,画出MN扫过的图形是解题的关键.
    2、(1)MN=AM+CN;(2)MN=AM+CN,理由见解析;(3)MN=CN-AM,理由见解析
    【分析】
    (1)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到点M'、C、N三点共线,再由∠MBN=45°,可得∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;
    (2)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得点M'、C、N三点共线,再由∠MBN=∠ABC,可得到∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;
    (3)在NC上截取C M'=AM,连接B M',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可证得△ABM≌△CB M',从而得到AM=C M',BM=B M',∠ABM=∠CB M',进而得到∠MA M'=∠ABC,再由∠MBN=∠ABC,可得∠MBN=∠M'BN,从而得到△NBM≌△NBM',即可求解.
    【详解】
    解:(1)如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,

    在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC ,
    ∴∠BCM'+∠BCD=180°,
    ∴点M'、C、N三点共线,
    ∵∠MBN=45°,
    ∴∠ABM+∠CBN=45°,
    ∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,
    即∠M'BN=∠MBN,
    ∵BN=BN,
    ∴△NBM≌△NBM',
    ∴MN= M'N,
    ∵M'N= M'C+CN,
    ∴MN= M'C+CN=AM+CN;
    (2)MN=AM+CN;理由如下:
    如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,

    ∵∠A+∠C=180°,
    ∴∠BCM'+∠BCD=180°,
    ∴点M'、C、N三点共线,
    ∵∠MBN=∠ABC,
    ∴∠ABM+∠CBN=∠ABC=∠MBN,
    ∴∠CBN+∠M'BC =∠MBN,即∠M'BN=∠MBN,
    ∵BN=BN,
    ∴△NBM≌△NBM',
    ∴MN= M'N,
    ∵M'N= M'C+CN,
    ∴MN= M'C+CN=AM+CN;
    (3)MN=CN-AM,理由如下:
    如图,在NC上截取C M'=AM,连接B M',

    ∵在四边形ABCD中,∠ABC+∠ADC=180°,
    ∴∠C+∠BAD=180°,
    ∵∠BAM+∠BAD=180°,
    ∴∠BAM=∠C,
    ∵AB=BC,
    ∴△ABM≌△CB M',
    ∴AM=C M',BM=B M',∠ABM=∠CB M',
    ∴∠MA M'=∠ABC,
    ∵∠MBN=∠ABC,
    ∴∠MBN=∠MA M'=∠M'BN,
    ∵BN=BN,
    ∴△NBM≌△NBM',
    ∴MN= M'N,
    ∵M'N=CN-C M',
    ∴MN=CN-AM.
    故答案是:MN=CN-AM.
    【点睛】
    本题主要考查了正方形的性质,全等三角形的性质和判定,图形的旋转,根据题意做适当辅助线,得到全等三角形是解题的关键.
    3、(1)见解析;(2)平行四边形DEFB的周长=
    【分析】
    (1)证DE是△ABC的中位线,得DE∥BC,BC=2DE,再证DE=BF,即可得出四边形DEFB是平行四边形;
    (2)由(1)得:BC=2DE=8(cm),BF=DE=4cm,四边形DEFB是平行四边形,得BD=EF,再由勾股定理求出BD=10(cm),即可求解.
    【详解】
    (1)证明:∵点D,E分别是AC,AB的中点,
    ∴DE是△ABC的中位线,
    ∴DE//BC,BC=2DE,
    ∵CF=3BF,
    ∴BC=2BF,
    ∴DE=BF,
    ∴四边形DEFB是平行四边形;
    (2)解:由(1)得:BC=2DE=8(cm),BF=DE=4cm,四边形DEFB是平行四边形,
    ∴BD=EF,
    ∵D是AC的中点,AC=12cm,
    ∴CD=AC=6(cm),
    ∵∠ACB=90°,
    ∴BD==10(cm),
    ∴平行四边形DEFB的周长=2(DE+BD)=2(4+10)=28(cm).
    【点睛】
    本题考查了平行四边形的判定与性质、三角形中位线定理、勾股定理等知识;熟练掌握三角形中位线定理,证明四边形DEFB为平行四边形是解题的关键.
    4、(1)见解析;(2)CE=.
    【分析】
    (1)根据平行线的性质及折叠性质证明∠FAC=∠FCA即可.
    (2)由题意可得,根据勾股定理求出AC=5,进而求出B'C=2,设CE= x.然后在Rt△中,根据勾股定理EC2=2+2列方程求解即可;
    【详解】
    解:(1)如图1,


    ∵四边形ABCD是矩形,
    ∴ADBC,
    ∴∠FAC=∠ACB,
    ∵∠ACB=∠ACF,
    ∴∠FAC=∠FCA,
    ∴FA=FC.
    (2)∵,如图2, 设CE= x,


    ∵四边形ABCD是矩形,
    ∴∠B=90°,
    ∴AC2=AB2+BC2= 32+42=25,
    ∴AC=5,
    由折叠可知:,,,
    ∴=5-3=2,
    在Rt△中,EC2=2+2
    ∴x2=(4-x)2+22,
    ∴x=,
    ∴CE=.
    【点睛】
    本题属于矩形折叠问题,考查了矩形的性质,勾股定理,直角三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.
    5、(1)见解析;(2)
    【分析】
    (1)由正方形的性质可得,,由的余角相等可得∠CBG=∠CDE,进而证明△BCG≌△DCE,从而证明CG=CE;
    (2)证明正方形的性质可得,结合已知条件即可求得,进而勾股定理即可求得的长
    【详解】
    (1)∵BF⊥DE
    ∴∠BFE=90°
    ∵四边形ABCD是正方形
    ∴∠DCE=90°,

    ∴∠CBG+∠E=∠CDE+∠E,
    ∴∠CBG=∠CDE
    ∴△BCG≌△DCE
    ∴CG=CE
    (2)∵,且,,

    ∵CG=CE
    ∴,
    在中,
    【点睛】
    本题考查了正方形的性质,全等三角形的性质与判定,勾股定理,掌握三角形全等的性质与判定与勾股定理是解题的关键.

    相关试卷

    数学八年级下册第十五章 四边形综合与测试课时作业:

    这是一份数学八年级下册第十五章 四边形综合与测试课时作业,共30页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试一课一练:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试一课一练,共24页。试卷主要包含了下列说法中,正确的是,下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    2021学年第十五章 四边形综合与测试练习题:

    这是一份2021学年第十五章 四边形综合与测试练习题,共31页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map