初中数学北京课改版八年级下册第十五章 四边形综合与测试课时练习
展开
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时练习,共22页。
京改版八年级数学下册第十五章四边形专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )
A.梯形 B.菱形 C.矩形 D.正方形2、下列测量方案中,能确定四边形门框为矩形的是( )A.测量对角线是否互相平分 B.测量两组对边是否分别相等C.测量对角线是否相等 D.测量对角线交点到四个顶点的距离是否都相等3、如图,已知在正方形ABCD中,厘米,,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在a与t的值,使与全等时,则t的值为( )
A.2 B.2或1.5 C.2.5 D.2.5或24、下列图标中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.5、如图,小明从点A出发沿直线前进10m到达点B,向左转,后又沿直线前进10m到达点C,再向左转30°后沿直线前进10m到达点...照这样走下去,小明第一次回到出发点A,一共走了( )米.A.80 B.100 C.120 D.1406、下列图形中,既是中心对称图形也是轴对称图形的是( )A.圆 B.平行四边形 C.直角三角形 D.等边三角形7、下面图案中既是轴对称图形又是中心对称图形的是( )A. B. C. D.8、如图,在矩形ABCD中,点O为对角线BD的中点,过点O作线段EF交AD于F,交BC于E,OB=EB,点G为BD上一点,满足EG⊥FG,若∠DBC=30°,则∠OGE的度数为( )
A.30° B.36° C.37.5° D.45°9、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是( )A.cm B.2cm C.1cm D.2cm10、下列图形中,可以看作是中心对称图形的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形的对角线、相交于点,分别以点、为圆心,长为半径画弧,分别交、于点、.若,,则图中阴影部分的面积为_______.(结果保留)2、如图,已知ABCD,和的平分线相交于,,求的度数_____.3、如图,平面直角坐标系中,有,,三点,以A,B,O三点为顶点的平行四边形的另一个顶点D的坐标为______.4、能使平行四边形ABCD为正方形的条件是___________(填上一个符合题目要求的条件即可).5、若一个n边形的每个内角都等于135°,则该n边形的边数是____________.三、解答题(5小题,每小题10分,共计50分)1、如图,已知△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足是E,F是BC的中点,求证:BD=2EF.2、如图所示,在边长为1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D两点的一动点,N是CD上一动点,且AM+CN=1.(1)证明:无论M,N怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值.3、如图,正方形ABCD的边长为4,连接对角线AC,点E为BC边上一点,将线段AE绕点A逆时针旋转45°得到线段AF,点E的对应点F恰好落在边CD上,过F作FM⊥AC于点M.(1)求证:BE=FM;(2)求BE的长度.4、在中,,斜边,过点作,以AB为边作菱形ABEF,若,求的面积.5、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三边长都是有理数的直角三角形;(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;(3)在图3中,画一个正方形,使它的面积是10. -参考答案-一、单选题1、B【分析】根据题意得到,然后根据菱形的判定方法求解即可.【详解】解:由题意可得:,∴四边形是菱形.故选:B.【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法.菱形的判定定理:①四条边都相等四边形是菱形;②一组邻边相等的平行四边形是菱形;③对角线垂直的平行四边形是菱形.2、D【分析】由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.【详解】解:A、∵对角线互相平分的四边形是平行四边形,∴对角线互相平分且相等的四边形才是矩形,∴选项A不符合题意;B、∵两组对边分别相等是平行四边形,∴选项B不符合题意;C、∵对角线互相平分且相等的四边形才是矩形,∴对角线相等的四边形不是矩形,∴选项C不符合题意;D、∵对角线交点到四个顶点的距离都相等,∴对角线互相平分且相等,∵对角线互相平分且相等的四边形是矩形,∴选项D符合题意;故选:D.【点睛】本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.3、D【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,BE=CP,
∵AB=BC=10厘米,AE=4厘米,
∴BE=CP=6厘米,
∴BP=10-6=4厘米,
∴运动时间t=4÷2=2(秒);
当,即点Q的运动速度与点P的运动速度不相等,
∴BP≠CQ,
∵∠B=∠C=90°,
∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.
∴点P,Q运动的时间t=(秒).综上t的值为2.5或2.
故选:D.【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.4、B【分析】由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,故本选项符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.5、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案.【详解】解:由 可得:小明第一次回到出发点A,一个要走米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为得到一共要走12个10米”是解本题的关键.6、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.圆既是中心对称图形也是轴对称图形,故此选项符合题意;B.平行四边形是中心对称图形,不是轴对称图形,故此选项不合题意;
C.直角三角形既不是中心对称图形,也不一定是轴对称图形,不符合题意;
D.等边三角形不是中心对称图形,是轴对称图形,故此选项不合题意.
故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.7、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.既是轴对称图形又是中心对称图形,故此选项符合题意.故选:D.【点睛】本题考查了轴对称图形和中心对称图形;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则此图形是轴对称图形,这条直线叫做对称轴;如果一个图形绕某一固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,固定的点叫对称中心;理解两个概念是解答本题的关键.8、C【分析】根据矩形和平行线的性质,得;根据等腰三角形和三角形内角和性质,得;根据全等三角形性质,通过证明,得;根据直角三角形斜边中线、等腰三角形、三角形内角和性质,推导得,再根据余角的性质计算,即可得到答案.【详解】∵矩形ABCD∴ ∴ ∵OB=EB,∴ ∴ ∵点O为对角线BD的中点,∴ 和中 ∴∴ ∵EG⊥FG,即 ∴ ∴ ∴ 故选:C.【点睛】本题考查了矩形、平行线、全等三角形、等腰三角形、三角形内角和、直角三角形的知识;解题的关键是熟练掌握矩形、全等三角形、等腰三角形、直角三角形斜边中线的性质,从而完成求解.9、B【分析】由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.【详解】解:∵菱形ABCD的周长为8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB===(cm),∴BD=2OB=2(cm),故选:B.【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.10、A【分析】根据中心对称图形的概念(在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,则为中心对称图形)求解即可.【详解】解:B、C、D三个选项的图形旋转后,均不能与原来的图形重合,不符合题意,A选项是中心对称图形.故本选项正确.故选:A.【点睛】本题考查了中心对称图形的概念,深刻理解中心对称图形的概念是解题关键.二、填空题1、##【分析】由图可知,阴影部分的面积是扇形AEO和扇形CFO的面积之和.【详解】解:∵四边形是矩形,∴,,,∴,,∴图中阴影部分的面积为:.故答案为:.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.2、110°度【分析】过点E作EH∥AB,然后由AB∥CD,可得AB∥EH∥CD,然后根据两直线平行内错角相等可得∠ABE=∠BEH,∠CDE=∠DEH,然后根据周角的定义可求∠ABE+∠CDE的度数;再根据角平分线的定义求出∠EBF+∠EDF的度数,然后根据四边形的内角和定理即可求∠BFD的度数.【详解】解:过点E作EH∥AB,如图所示,∵AB∥CD,∴AB∥EH∥CD,∴∠ABE=∠BEH,∠CDE=∠DEH,∵∠BEH+∠DEH+∠BED=360°,∠BED=140°,∴∠BEH+∠DEH=220°,∴∠ABE+∠CDE=220°,∵∠ABE和∠CDE的平分线相交于F,∴∠EBF+∠EDF=(∠ABE+∠CDE)=110°,∵∠BFD+∠BED+∠EBF+∠EDF=360°,∴∠BFD=110°.故答案为:110°.【点睛】本题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.另外过点E作EH∥AB,也是解题的关键.3、(9,4)、(-3,4)、(3,-4)【分析】根据平行四边形的性质得出AD=BO=6,AD∥BO,根据平行线得出A和D的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标.【详解】∵平行四边形ABCD的顶点A、B、O的坐标分别为(3,4)、(6,0)、(0,0),∴AD=BO=6,AD∥BO,∴D的横坐标是3+6=9,纵坐标是4,即D的坐标是(9,4),同理可得出D的坐标还有(-3,4)、(3,-4).故答案为:(9,4)、(-3,4)、(3,-4).【点睛】本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等.4、AC=BD且AC⊥BD(答案不唯一)【分析】根据正方形的判定定理,即可求解.【详解】解:当AC=BD时,平行四边形ABCD为菱形,又由AC⊥BD,可得菱形ABCD为正方形,所以当AC=BD且AC⊥BD时,平行四边形ABCD为正方形.故答案为:AC=BD且AC⊥BD(答案不唯一)【点睛】本题主要考查了正方形的判定,熟练掌握正方形的判定定理是解题的关键.5、8【分析】根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n边形的边数【详解】解:∵一个n边形的每个内角都等于135°,∴则这个n边形的每个外角等于该n边形的边数是故答案为:【点睛】本题考查了多边形的内角与外角的关系,求得多边形的外角是解题的关键.三、解答题1、见解析.【分析】先证明 再证明EF是△CDB的中位线,从而可得结论.【详解】证明:∵AD=AC,AE⊥CD∴CE=ED∵F是BC的中点∴EF是△CDB的中位线∴BD=2EF【点睛】本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.2、(1)见解析;(2)△BMN面积的最小值为【分析】(1)连接BD,证明△AMB≌△DNB,则可得BM=BN,∠MBA=∠NBD,由菱形的性质易得∠MBN=60゜,从而可证得结论成立;(2)过点B作BE⊥MN于点E.【详解】(1)证明:如图所示,连接BD,在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等边三角形,∴AB=BD,又AM+CN=1,DN+CN=1,∴AM=DN,在△AMB和△DNB中,,∴△AMB≌△DNB(SAS),∴BM=BN,∠MBA=∠NBD,又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等边三角形;(2)过点B作BE⊥MN于点E.设BM=BN=MN=x,则,故,∴当BM⊥AD时,x最小,此时,,.∴△BMN面积的最小值为.【点睛】本题考查了菱形的性质,等边三角形的判定与性质,垂线段最短,全等三角形的判定与性质等知识,关键是作辅助线证三角形全等.3、(1)见解析;(2)—4【分析】(1)由旋转和正方形的性质得出∠FAM=∠EAB,再证≌即可;(2)求出正方形对角线长,再求出MC=—4即可.【详解】(1)证明:在正方形ABCD中,线段AE绕点A逆时针旋转45°得到线段AF∠CAB=45°,∠EAF=45°,AE=AF ∠FAM=∠EAB ∵FM⊥AC∠FMA=∠B=90°≌(AAS) BE=FM (2)在正方形ABCD中,边长为4AC=,∠DCA=45° ≌ ∴AM=AB=4 MC=AC—AM=—4 ∵是等腰直角三角形BE=MF=MC=—4【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,解题关键是熟练运用正方形的性质和全等三角形的判定进行证明推理.4、4【分析】分别过点E、C作EH、CG垂直AB,垂足为点H、G,则CG是斜边AB上的高;在菱形ABEF中, 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30°角的直角三角形的性质求出EH,问题即可解答。【详解】解:如图,分别过作垂足为点 四边形ABEF为菱形,,,,在中, ,根据题意,,根据平行线间的距离处处相等, .答:的面积为4.【点睛】本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键.5、(1)见解析;(2)见解析;(3)见解析【分析】(1)如图,AB=4,BC=3,,利用勾股定理逆定理即可得到△ABC是直角三角形;(2)如图, ,,利用勾股定理逆定理即可得到△ABC是直角三角形;(3)如图, ,则,∠ABC=90°,即可得到四边形ABCD是正方形,.【详解】解:(1)如图所示,AB=4,BC=3,,∴,∴△ABC是直角三角形;
(2)如图所示, ,∴,∴△ABC是直角三角形;
(3)如图所示,, ,∴,∴∠ABC=90°,∴四边形ABCD是正方形,∴.
【点睛】本题主要考查了有理数与无理数,正方形的判定,勾股定理和勾股定理的逆定理,熟知相关知识是解题的关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试巩固练习,共27页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共30页。试卷主要包含了如图,M等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试随堂练习题,共27页。试卷主要包含了如图,在六边形中,若,则,下列图案中,是中心对称图形的是等内容,欢迎下载使用。