2020-2021学年第十五章 四边形综合与测试当堂达标检测题
展开
这是一份2020-2021学年第十五章 四边形综合与测试当堂达标检测题,共28页。试卷主要包含了下列∠A等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,矩形ABCD的对角线AC和BD相交于点O,若∠AOD=120°,AC=16,则AB的长为( )
A.16 B.12 C.8 D.4
2、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为( )
A.180° B.360°
C.540° D.不能确定
3、如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )
A.1 B.1.5 C.2 D.4
4、如图,在中,,,AD平分,E是AD中点,若,则CE的长为( )
A. B. C. D.
5、下列图形中,不是中心对称图形的是( )
A. B. C. D.
6、下列∠A:∠B:∠C:∠D的值中,能判定四边形ABCD是平行四边形的是( )
A.1:2:3:4 B.1:4:2:3
C.1:2:2:1 D.3:2:3:2
7、如图,在△ABC中,点E,F分别是AB,AC的中点.已知∠B=55°,则∠AEF的度数是( )
A.75° B.60° C.55° D.40°
8、如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以vcm/s的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为( )
A.2 B.4 C.4或 D.2或
9、下列图标中,既是中心对称图形又是轴对称图形的是( )
A. B. C. D.
10、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )
A.46.5cm B.22.5cm C.23.25cm D.以上都不对
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平行四边形ABCD中,,E、F分别在CD和BC的延长线上,,,则______.
2、若一个n边形的每个内角都等于135°,则该n边形的边数是____________.
3、如图,在矩形ABCD中,AB=2,AD=2,E为BC边上一动点,F、G为AD边上两个动点,且∠FEG=30°,则线段FG的长度最大值为 _____.
4、在平面直角坐标系中,点(-2,5)关于原点对称的点的坐标是___________.
5、如图,点O是正方形ABCD的称中心O,互相垂直的射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF;已知.
(1)以点E,O,F,D为顶点的图形的面积为________________;
(2)线段EF的最小值是_______________.
三、解答题(5小题,每小题10分,共计50分)
1、如图1,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B的另一条直线交x轴正半轴于点C.
(1)写出C点坐标 ;
(2)若M为线段BC上一点,且满足S△AMB = S△AOB,请求出点M的坐标;
(3)如图2,设点F为线段AB中点,点G为y轴正半轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求出点G的坐标.
2、在四边形ABCD中,∠A=100°,∠D=140°.
(1)如图①,若∠B=∠C,则∠B= 度;
(2)如图②,作∠BCD的平分线CE交AB于点E.若CE∥AD,求∠B的大小.
3、如图,在Rt△ABC中,∠ACB=90°.
(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC,∠BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);
(2)求证:四边形CEDF是矩形.
4、如图:在中,,,点为的中点,点为直线上的动点(不与点,重合),连接,,以为边在的上方作等边,连接.
(1)是________三角形;
(2)如图1,当点在边上时,运用(1)中的结论证明;
(3)如图2,当点在的延长线上时,(2)中的结论是否依然成立?若成立,请加以证明,若不成立,请说明理由.
5、如图,在中,对角线AC、BD交于点O,AB=10,AD=8,AC⊥BC,求
(1)的面积;
(2)△AOD的周长.
-参考答案-
一、单选题
1、C
【分析】
由题意可得AO=BO=CO=DO=8,可证△ABO是等边三角形,可得AB=8.
【详解】
解:∵四边形ABCD是矩形,
∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,
∴OA=OB=8,
∵∠AOD=120°,
∴∠AOB=60°,
∴△AOB是等边三角形,
∴AB=AO=BO=8,
故选:C.
【点睛】
本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键.
2、B
【分析】
设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360°,即可求解.
【详解】
解:设BE与DF交于点M,BE与AC交于点N,
∵ ,
∴ ,
∵,
∴ .
故选:B
【点睛】
本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.
3、C
【分析】
取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解.
【详解】
解:取线段AC的中点G,连接EG,如图所示.
∵AC=BC=8,∠BCA=60°,
∴△ABC为等边三角形,且AD为△ABC的对称轴,
∴CD=CG=AB=4,∠ACD=60°,
∵∠ECF=60°,
∴∠FCD=∠ECG,
在△FCD和△ECG中,
,
∴△FCD≌△ECG(SAS),
∴DF=GE.
当EG∥BC时,EG最小,
∵点G为AC的中点,
∴此时EG=DF=CD=BC=2.
故选:C.
【点睛】
本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.
4、B
【分析】
根据三角形内角和定理求出∠BAC,根据角平分线的定义∠DAB=∠B,求出AD,根据直角三角形的性质解答即可.
【详解】
解:∵∠ACB=90°,∠B=30°,
∴∠BAC=90°-30°=60°,
∵AD平分∠BAC,
∴∠DAB=∠BAC=30°,
∴∠DAB=∠B,
∴AD=BD=a,
在Rt△ACB中,E是AD中点,
∴CE=AD=,
故选: B.
【点睛】
本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键.
5、C
【详解】
解:选项A是中心对称图形,故A不符合题意;
选项B是中心对称图形,故B不符合题意;
选项C不是中心对称图形,故C符合题意;
选项D是中心对称图形,故D不符合题意;
故选C
【点睛】
本题考查的是中心对称图形的识别,掌握“中心对称图形的定义判断中心对称图形”是解本题的关键,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形.
6、D
【分析】
两组对角分别相等的四边形是平行四边形,所以∠A和∠C是对角,∠B和∠D是对角,对角的份数应相等.
【详解】
解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件.
故选:D.
【点睛】
本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
7、C
【分析】
证EF是△ABC的中位线,得EF∥BC,再由平行线的性质即可求解.
【详解】
解:∵点E,F分别是AB,AC的中点,
∴EF是△ABC的中位线,
∴EF∥BC,
∴∠AEF=∠B=55°,
故选:C.
【点睛】
本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EF∥BC是解题的关键.
8、D
【分析】
根据题意可知当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP,②当AP=BP时,△AEP≌△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.
【详解】
解:当△EAP与△PBQ全等时,有两种情况:
①当EA=PB时,△APE≌△BQP(SAS),
∵AB=10cm,AE=6cm,
∴BP=AE=6cm,AP=4cm,
∴BQ=AP=4cm;
∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,
∴点P和点Q的运动时间为:4÷2=2s,
∴v的值为:4÷2=2cm/s;
②当AP=BP时,△AEP≌△BQP(SAS),
∵AB=10cm,AE=6cm,
∴AP=BP=5cm,BQ=AE=6cm,
∵5÷2=2.5s,
∴2.5v=6,
∴v=.
故选:D.
【点睛】
本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键.
9、B
【分析】
由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案.
【详解】
解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,故本选项符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
10、C
【分析】
如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,则,,,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.
【详解】
解:如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,
∴,,,
∴△DEF的周长,
同理可得:△GHI的周长,
∴第三次作中位线得到的三角形周长为,
∴第四次作中位线得到的三角形周长为
∴第三次作中位线得到的三角形周长为
∴这五个新三角形的周长之和为,
故选C.
【点睛】
本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.
二、填空题
1、8
【分析】
证明四边形ABDE是平行四边形,得到DE=CD=,, 过点E作EH⊥BF于H,证得CH=EH,利用勾股定理求出EH,再根据30度角的性质求出EF.
【详解】
解:∵四边形ABCD是平行四边形,
∴,AB=CD,
∵,
∴四边形ABDE是平行四边形,
∴DE=CD=,,
过点E作EH⊥BF于H,
∵,
∴∠ECH=,
∴CH=EH,
∵,,
∴CH=EH=4,
∵∠EHF=90°,,
∴EF=2EH=8,
故答案为:8.
【点睛】
此题考查了平行四边形的判定及性质,勾股定理,直角三角形30度角的性质,熟记各知识点并应用解决问题是解题的关键.
2、8
【分析】
根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n边形的边数
【详解】
解:∵一个n边形的每个内角都等于135°,
∴则这个n边形的每个外角等于
该n边形的边数是
故答案为:
【点睛】
本题考查了多边形的内角与外角的关系,求得多边形的外角是解题的关键.
3、
【分析】
如图所示,在中,FG边的高为AB=2,∠FEG=30°,为定角定高的三角形,故当E与B点或C点重合,G与D点重合或F与A点重合时,FG的长度最大,则由矩形ABCD中,AB=2,AD=2可知,∠ABD=60°,故∠ABF=60°-30°=30°,则AF=,则FG=AD-AF=.
【详解】
如图所示,在中,FG边的高为AB=2,∠FEG=30°,为定角定高的三角形
故当E与B点或C点重合,G与D点重合或F与A点重合时,FG的长度最大
∵矩形ABCD中,AB=2,AD=2
∴∠ABD=60°
∴∠ABF=60°-30°=30°
∴AF=
∴FG=AD-AF=.
故答案为:.
【点睛】
本题考查了四边形中动点问题,图解法数学思想依据是数形结合思想. 它的应用能使复杂问题简单化、 抽象问题具体化. 特殊四边形的几何问题, 很多困难源于问题中的可动点. 如何合理运用各动点之间的关系,同学们往往缺乏思路, 常常导致思维混乱.实际上求解特殊四边形的动点问题,关键是是利用图解法抓住它运动中的某一瞬间,寻找合理的代数关系式, 确定运动变化过程中的数量关系, 图形位置关系, 分类画出符合题设条件的图形进行讨论, 就能找到解决的途径, 有效避免思维混乱.
4、(2,-5)
【分析】
根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).
【详解】
解:根据中心对称的性质,得点P(-2,5)关于原点对称点的点的坐标是(2,-5).
故答案为:(2,-5).
【点睛】
本题主要考查了关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆,比较简单.
5、1
【分析】
(1)连接OA、OD,根据正方形的性质和全等三角形的判定证明△OAE≌△ODF,利用全等三角形的性质得出四边形EOFD的面积等于△AOD的面积即可求解;
(2)根据全等三角形的性质证得△EOF为等腰直角三角形,则EF=OE,当OE⊥AD时OE最小,则EF最小,求解此时在OE即可解答.
【详解】
解:(1)连接OA、OD,
∵四边形ABCD是正方形,
∴OA=OD,∠AOD=90°,∠EAO=∠FDO=45°,
∴∠AOE+∠DOE=90°,
∵OE⊥OF,
∴∠DOF+∠DOE=90°,
∴∠AOE=∠DOF,
在△OAE和△ODF中,
,
∴△OAE≌△ODF(ASA),
∴S△OAE=S△ODF,
∴S四边形EOFD = S△ODE+S△ODF= S△ODE+S△OAE= S△AOD= S正方形ABCD,
∵AD=2,
∴S四边形EOFD= ×4=1,
故答案为:1;
(2)∵△OAE≌△ODF,
∴OE=OF,
∴△EOF为等腰直角三角形,则EF=OE,
当OE⊥AD时OE最小,即EF最小,
∵OA=OD,∠AOD=90°,
∴OE=AD=1,
∴EF的最小值,
故答案为:.
【点睛】
本题考查正方形的性质、全等三角形的判定与性质、等角的余角相等、等腰直角三角形的判定与性质、垂线段最短,熟练掌握相关知识的联系与运用是解答的关键.
三、解答题
1、(1)点C(6,0);(2)点;(3)满足条件的点G坐标为或.
【分析】
(1)直接利用直线,令y=0,解方程即可;
(2)结合图形,由S△AMB=S△AOB 分析出直线OM平行于直线AB,再利用两直线相交建立方程组,解方程组求得交点M的坐标;
(3)分两种情形:①当n>4时,如图2-1中,点Q落在BC上时,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.求出Q(n-4,n-2).②当n<4时,如图2-2中,同法可得Q(4-n,n+2),代入直线BC的解析式解方程即可解决问题.
【详解】
解:(1)∵直线交x轴正半轴于点C.
∴当y=0时,,
解得x=6
∴点C(6,0)
故答案为(6,0);
(2)连接OM并双向延长,
∵S△AMB=S△AOB ,
∴点O到AB与点M到AB的距离相等,
∴直线OM平行于直线AB,
∵AB解析式为y=2x+8,
故设直线OM解析式为:,
将直线OM的解析式与直线BC的解析式联立得方程组得:
,
解得:
故点;
(3)∵直线y=2x+8与x轴交于点A,与y轴交于点B,
∴令y=0,2x+8=0,
解得x=-4,
∴A(-4,0),
令x=0,则y=8
∴B(0,8),
∵点F为AB中点,
点F横坐标为,纵坐标为
∴F(-2,4),
设G(0,n),
①当n>4时,如图2-1中,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.
∵四边形FGQP是正方形,
∴FG=QG,∠FGQ=90°,
∴∠MGF+∠NGQ=180°-∠FGQ=180°-90°=90°,
∵FM⊥MN,QN⊥MN,
∴∠M=∠N=90°,
∴∠MFG+∠MGF=90°,
∴∠MFG=∠NGQ,
在△FMG和△GNQ中,
,
∴△FMG≌△GNQ,
∴MG=NQ=2,FM=GN=n-4,
∴Q(n-4,n-2),
∵点Q在直线上,
∴,
∴,
∴.
②当n<4时,如图2-2中,
点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.
∵四边形FGQP是正方形,
∴FG=QG,∠FGQ=90°,
∴∠MGF+∠NGQ=180°-∠FGQ=180°-90°=90°,
∵FM⊥MN,QN⊥MN,
∴∠M=∠N=90°,
∴∠MFG+∠MGF=90°,
∴∠MFG=∠NGQ,
在△FMG和△GNQ中,
,
∴△FMG≌△GNQ,
∴MG=NQ=2,FM=GN= 4-n,
∴Q(4- n, n+2),
∵点Q在直线上,
∴,
∴n=-2,
∴.
综上所述,满足条件的点G坐标为或.
【点睛】
本题属于一次函数综合题,考查了一次函数与坐标轴的交点,平行线性质,两直线联立解方程组,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
2、(1)60;(2)40°.
【分析】
(1)根据四边形内角和为360°解决问题;
(2)由CE//AD推出∠DCE+∠D=180°,所以∠DCE=40°,根据CE平分∠BCD,推出∠BCD=80°,再根据四边形内角和为360°求出∠B度数;
【详解】
(1)∵∠A=100°,∠D=140°,
∴∠B=∠C==60°,
故答案为60;
(2)∵CE//AD,
∠DCE+∠D=180°,
∴∠DCE=40°,
∵CE平分∠BCD,
∴∠BCD=80°,
∴∠B=360°﹣(100°+140°+80°)=40°.
【点睛】
本题考查了多边形内角与外角以及平行线的性质,熟练运用多边形内角性质和平行线的性质是解题的关键.
3、(1)见解析(2)见解析
【分析】
(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.
(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明与都是,最后加上,即可证明结论.
【详解】
(1)答案如下图所示:
分别以A、B两点为圆心,以大于长为半径画弧,连接弧的交点的直线即为垂直平分线l,其与AB的交点为D,以点D为圆心,适当长为半径画弧,分别交DA于点M,交CD于点N,交BD于点T,然后分别以点M,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交AC于点E,同理分别以点T,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交BC于点F.
(2)证明:点是AB与其垂直平分线l的交点,
点是AB的中点,
是Rt△ABC上的斜边的中线,
,
DE、DF分别是ADC,∠BDC的角平分线,
,,
,
,
,
,
,
在四边形CEDF中,,
四边形CEDF是矩形.
【点睛】
本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键.
4、(1)等边;(2)见解析;(3)成立,理由见解析
【分析】
(1)根据含30度角的直角三角形的性质,直角三角形斜边上的中线等于斜边的一半可证明,即可证明△OBC是等边三角形;
(2)先证明,即可利用SAS证明,得到;
(3)先证明,即可利用SAS证明,得到.
【详解】
(1)∵∠ACB=90°,∠A=30°,O是AB的中点,
∴,
∴△OBC是等边三角形,
故答案为:等边;
(2)由(1)可知,,,
是等边三角形,
,,
,即,
在和中
,
,
;
(3)成立,
证明:由(1)可知,,,
是等边三角形,
,,
,即,
在和中
,
,
.
【点睛】
本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,熟练掌握等边三角形的性质与判定条件是解题的关键.
5、(1)48(2)
【分析】
(1)利用勾股定理先求出高AC,故可求解面积;
(2)根据平行四边形的性质求出AO,再利用勾股定理求出OB的长,故可求解.
【详解】
解:(1)∵四边形ABCD是平行四边形,且AD=8
∴BC=AD=8
∵AC⊥BC
∴∠ACB=90°
在Rt△ABC中,由勾股定理得AC2=AB2-BC2
∴
∴
(2)∵四边形ABCD是平行四边形,且AC=6
∴
∵∠ACB=90°,BC=8
∴,
∴
∴.
【点睛】
此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用.
相关试卷
这是一份数学八年级下册第十五章 四边形综合与测试同步测试题,共29页。试卷主要包含了下列∠A,下列图形中不是中心对称图形的是,下列说法中,不正确的是等内容,欢迎下载使用。
这是一份2021学年第十五章 四边形综合与测试随堂练习题,共24页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试当堂检测题,共29页。