终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年京改版八年级数学下册第十五章四边形专题训练试卷(无超纲带解析)

    立即下载
    加入资料篮
    2022年京改版八年级数学下册第十五章四边形专题训练试卷(无超纲带解析)第1页
    2022年京改版八年级数学下册第十五章四边形专题训练试卷(无超纲带解析)第2页
    2022年京改版八年级数学下册第十五章四边形专题训练试卷(无超纲带解析)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十五章 四边形综合与测试一课一练

    展开

    这是一份北京课改版八年级下册第十五章 四边形综合与测试一课一练,共26页。试卷主要包含了下列说法中,不正确的是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )
    A.5B.4C.3D.2
    2、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )
    A.B.C.D.
    3、下列四个图形中,为中心对称图形的是( )
    A.B.
    C.D.
    4、下列说法中,不正确的是( )
    A.四个角都相等的四边形是矩形
    B.对角线互相平分且平分每一组对角的四边形是菱形
    C.正方形的对角线所在的直线是它的对称轴
    D.一组对边相等,另一组对边平行的四边形是平行四边形
    5、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是( )
    A.B.
    C.D.
    6、下列图形中,既是中心对称图形又是轴对称图形的有几个( )
    A.1个B.2个C.3个D.4个
    7、如图,在中,,点,分别是,上的点,,,点,,分别是,,的中点,则的长为( ).
    A.4B.10C.6D.8
    8、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )
    A.46.5cmB.22.5cmC.23.25cmD.以上都不对
    9、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )
    A.14或15或16B.15或16或17C.15或16D.16或17
    10、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA=,则点C的坐标为( )
    A.(,1)B.(1,1)C.(1,)D.(+1,1)
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、能使平行四边形ABCD为正方形的条件是___________(填上一个符合题目要求的条件即可).
    2、在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是______.
    3、如图,在矩形ABCD中,AD=3AB,点G,H分别在AD,BC上,连BG,DH,且,当=_______时,四边形BHDG为菱形.
    4、在四边形ABCD中,若AB//CD,BC_____AD,则四边形ABCD为平行四边形.
    5、如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=_____cm.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,将矩形沿折叠,使点落在边上的点处;再将矩形沿折叠,使点落在点处且过点.
    (1)求证:四边形是平行四边形;
    (2)当是多少度时,四边形为菱形?试说明理由.
    2、如图,是的中位线,延长到,使,连接.
    求证:.
    3、如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.
    (1)求证:△ABE≌△CDF;
    (2)连接BD,若∠1=32°,∠ADB=22°,请直接写出当∠ABE= °时,四边形BFDE是菱形.
    4、如图1,在平面直角坐标系中,直线l1:y=kx+b(k≠0)与x轴交于点A,与y轴交于点B(0,6),直线l2与x轴交于点C,与直线l1交于D(m,3),OC=2OA,tan∠BAO=.
    (1)求直线l2的解析式.
    (2)在线段DC上是否存在点P,使△DAP的面积为?若存在,求出点P的坐标,若不存在,请说明理由.
    (3)如图2,连接OD,将△ODB沿直线AB翻折得到△O'DB.若点M为直线AB上一动点,在平面内是否存在点N,使得以B、O′、M、N为顶点的四边形为菱形,若存在,直接写出N的坐标,若不存在,请说明理由.
    5、如图,△ABC中,点D是边AC的中点,过D作直线PQ∥BC,∠BCA的平分线交直线PQ于点E,点G是△ABC的边BC延长线上的点,∠ACG的平分线交直线PQ于点F.求证:四边形AECF是矩形.
    -参考答案-
    一、单选题
    1、A
    【分析】
    利用直角三角形斜边的中线的性质可得答案.
    【详解】
    解:∵∠C=90°,若D为斜边AB上的中点,
    ∴CD=AB,
    ∵AB的长为10,
    ∴DC=5,
    故选:A.
    【点睛】
    此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.
    2、B
    【分析】
    根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积.
    【详解】
    解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2.
    ∵一个直角三角形的周长为3+,
    ∴AB+BC=3+-2=1+.
    等式两边平方得(AB+BC)2= (1+) 2,
    即AB2+BC2+2AB•BC=4+2,
    ∵AB2+BC2=AC2=4,
    ∴2AB•BC=2,AB•BC=,
    即三角形的面积为×AB•BC=.
    故选:B.
    【点睛】
    本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出AC•BC的值是解此题的关键,值得学习应用.
    3、B
    【分析】
    把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
    【详解】
    解:选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;
    选项A、C、D不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;
    故选:B.
    【点睛】
    此题主要考查了中心对称图形定义,关键是找出对称中心.
    4、D
    【分析】
    根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.
    【详解】
    解:A、四个角都相等的四边形是矩形,说法正确;
    B、正方形的对角线所在的直线是它的对称轴,说法正确;
    C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;
    D、一组对边相等且平行的四边形是平行四边形,原说法错误;
    故选:D.
    【点睛】
    本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键.
    5、C
    【分析】
    根据中心对称图形的定义进行逐一判断即可.
    【详解】
    解:A、不是中心对称图形,故此选项不符合题意;
    B、不是中心对称图形,故此选项不符合题意;
    C、是中心对称图形,故此选项符合题意;
    D、不是中心对称图形,故此选项不符合题意;
    故选C.
    【点睛】
    本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
    6、A
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;
    第二个图形是轴对称图形,不是中心对称图形,不符合题意;
    第三个图形是轴对称图形,不是中心对称图形,不符合题意;
    第四个图形既是轴对称图形,也是中心对称图形,符合题意;
    既是中心对称图形又是轴对称图形的只有1个,
    故选:A.
    【点睛】
    本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    7、B
    【分析】
    根据三角形中位线定理得到PD=BF=6,PD∥BC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.
    【详解】
    解:∵∠C=90°,
    ∴∠CAB+∠CBA=90°,
    ∵点P,D分别是AF,AB的中点,
    ∴PD=BF=6,PD//BC,
    ∴∠PDA=∠CBA,
    同理,QD=AE=8,∠QDB=∠CAB,
    ∴∠PDA+∠QDB=90°,即∠PDQ=90°,
    ∴PQ==10,
    故选:B.
    【点睛】
    本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    8、C
    【分析】
    如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,则,,,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.
    【详解】
    解:如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,
    ∴,,,
    ∴△DEF的周长,
    同理可得:△GHI的周长,
    ∴第三次作中位线得到的三角形周长为,
    ∴第四次作中位线得到的三角形周长为
    ∴第三次作中位线得到的三角形周长为
    ∴这五个新三角形的周长之和为,
    故选C.
    【点睛】
    本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.
    9、A
    【分析】
    由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可.
    【详解】
    解:设新多边形的边数为n,
    则(n-2)•180°=2340°,
    解得:n=15,
    ①若截去一个角后边数增加1,则原多边形边数为14,
    ②若截去一个角后边数不变,则原多边形边数为15,
    ③若截去一个角后边数减少1,则原多边形边数为16,
    所以多边形的边数可以为14,15或16.
    故选:A.
    【点睛】
    本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)•180°(n为边数)是解题的关键.
    10、B
    【分析】
    作CD⊥x轴,根据菱形的性质得到OC=OA=,在Rt△OCD中,根据勾股定理求出OD的值,即可得到C点的坐标.
    【详解】
    :作CD⊥x轴于点D,
    则∠CDO=90°,
    ∵四边形OABC是菱形,OA=,
    ∴OC=OA=,
    又∵∠AOC=45°,
    ∴∠OCD=90°-∠AOC=90°-45°=45°,
    ∴∠DOC=∠OCD,
    ∴CD=OD,
    在Rt△OCD中,OC=,CD2+OD2=OC2,
    ∴2OD2=OC2=2,
    ∴OD2=1,
    ∴OD=CD=1(负值舍去),
    则点C的坐标为(1,1),
    故选:B.
    【点睛】
    此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.
    二、填空题
    1、AC=BD且AC⊥BD(答案不唯一)
    【分析】
    根据正方形的判定定理,即可求解.
    【详解】
    解:当AC=BD时,平行四边形ABCD为菱形,
    又由AC⊥BD,可得菱形ABCD为正方形,
    所以当AC=BD且AC⊥BD时,平行四边形ABCD为正方形.
    故答案为:AC=BD且AC⊥BD(答案不唯一)
    【点睛】
    本题主要考查了正方形的判定,熟练掌握正方形的判定定理是解题的关键.
    2、 (3,-7)
    【分析】
    根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
    【详解】
    解:在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是(3,-7),
    故答案为:(3,-7).
    【点睛】
    本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
    3、
    【分析】
    设 则再利用矩形的性质建立方程求解 从而可得答案.
    【详解】
    解: 四边形BHDG为菱形,


    AD=3AB,
    设 则

    矩形ABCD,


    解得:


    故答案为:
    【点睛】
    本题考查的是勾股定理的应用,矩形的性质,菱形的性质,利用图形的性质建立方程确定之间的关系是解本题的关键.
    4、
    【分析】
    根据平行四边形的判定:两组对边分别平行的四边形是平行四边形即可解决问题.
    【详解】
    解:根据两组对边分别平行的四边形是平行四边形可知:
    ∵AB//CD,BC//AD,
    ∴四边形ABCD为平行四边形.
    故答案为://.
    【点睛】
    本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
    5、##
    【分析】
    根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴∠ABC=90°,BD=AC,BO=OD,
    ∵AB=6cm,BC=8cm,
    ∴由勾股定理得:(cm),
    ∴DO=5cm,
    ∵点E、F分别是AO、AD的中点,
    ∴EF=OD=2.5cm,
    故答案为:2.5.
    【点睛】
    本题考查了矩形的性质的应用,勾股定理,三角形中位线的应用,解本题的关键是求出OD长及证明EF=OD.
    三、解答题
    1、(1)见解析;(2)当∠B1FE=60°时,四边形EFGB为菱形,理由见解析
    【分析】
    (1)由题意,,结合,得,同理可得,即,结合,依据平行四边形的判定定理即可证明四边形BEFG是平行四边形;
    (2)根据菱形的性质可得,结合(1)中结论得出为等边三角形,依据等边三角形的性质及(1)中结论即可求出角的大小.
    【详解】
    证明:(1)∵,
    ∴.
    又∵,
    ∴.
    ∴.
    同理可得:.
    ∴,
    又∵,
    ∴四边形BEFG是平行四边形;
    (2)当时,四边形EFGB为菱形.
    理由如下:
    ∵四边形BEFG是菱形,
    ∴,
    由(1)得:,
    ∴,
    ∴为等边三角形,
    ∴,
    ∴.
    【点睛】
    题目主要考查平行四边形和菱形的判定定理和性质,矩形的折叠问题,等边三角形的性质,熟练掌握特殊四边形的判定和性质是解题关键.
    2、见解析
    【分析】
    由已知条件可得DF=AB及DF∥AB,从而可得四边形ABFD为平行四边形,则问题解决.
    【详解】
    ∵是的中位线
    ∴DE∥AB,,AD=DC
    ∴DF∥AB
    ∵EF=DE
    ∴DF=AB
    ∴四边形ABFD为平行四边形
    ∴AD=BF
    ∴BF=DC
    【点睛】
    本题主要考查了平行四边形的判定与性质、三角形中位线的性质定理,掌握它们是解答本题的关键.当然本题也可以用三角形全等的知识来解决.
    3、(1)见解析;(2)12
    【分析】
    (1)由“SAS”可证△ABE≌△CDF;
    (2)通过证明BE=DE,可得结论.
    【详解】
    证明:(1)∵四边形ABCD是平行四边形,
    ∴AB=CD,∠BAD=∠BCD,
    ∴∠1=∠DCF,
    在△ABE和△CDF中,

    ∴△ABE≌△CDF(SAS);
    (2)当∠ABE=10°时,四边形BFDE是菱形,
    理由如下:∵△ABE≌△CDF,
    ∴BE=DF,AE=CF,
    ∵四边形ABCD是平行四边形,
    ∴AD=BC,
    ∴AD+AE=BC+CF,
    ∴BF=DE,
    ∴四边形BFDE是平行四边形,
    ∵∠1=32°,∠ADB=22°,
    ∴∠ABD=∠1-∠ADB=10°,
    ∵∠ABE=12°,
    ∴∠DBE=22°,
    ∴∠DBE=∠ADB=22°,
    ∴BE=DE,
    ∴平行四边形BFDE是菱形,
    故答案为:12.
    【点睛】
    本题考查了菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,掌握菱形的判定是解题的关键.
    4、(1);(2)(,2);(3)N点坐标为(,)、(,)、(0,0)或(,6).
    【分析】
    (1)由y轴截距以及正切值,可求出,则 A点坐标为(,0),因为OC=2OA所以C点坐标为(,0 ),将D(m,3)代入,得D点坐标为( ,3),再将D(,3),C(,0 )代入,求得.
    (2)设P点坐标为(a,),由题意可知△DAP为,△DAP的高为A点到直线CD的距离,过 A点做DC平行线交y轴于点E,由可知 ,将A(,0)代入,解得 ,故两线间的距离为,△DAP的高为,由三角形面积= 底×高,有2,故有,进而即可求解;
    (3)如图所示,共有4个点满足条件,证明见解析.
    【详解】
    (1)∵B(0,6),tan∠BAO=

    令y=0,得A点坐标为(,0)
    ∵OC=2OA
    ∴C点坐标为(,0)
    将D(m,3)代入
    ∴D点坐标为(,3)
    将D(,3),C(,0)代入有


    (2)设P点坐标为(a,),过A点做DC平行线交y轴于点E
    ∵AE//DC


    将A(,0)代入
    得b=2

    故和间的距离为,即△DAP的高为
    由三角形面积=底×高有
    有2
    故有
    化简得
    解得a=0(舍去)或a=,
    故P点坐标为(,2).
    (3)
    如图所示,可知BO’=6,在B点上方截取BM1=6,过M1做BO’平行线,过O’做BM1平行线,两平行线相交于N1.
    由作图步骤可知▱BO’N1M1为菱形,
    由菱形性质可得N1坐标为(,).
    如图所示,可知BO’=6,在B点下方截取BM2=6,过M2做BO’平行线,过O’做BM2平行线,两平行线相交于N2.
    由作图步骤可知▱BO’N2M2为菱形,
    由菱形性质可得N2坐标为(,).
    如图所示,可知BO’=6,在B点下方截取BN3=6,过N3做BO’平行线,过O’做BN3平行线,两平行线相交于M3.
    由作图步骤可知▱B N3M3O’为菱形,
    由菱形性质可得N3坐标为(0,0).
    如图所示,可知BO’=6,令BO’做菱形其中一条对角线,过O’做x轴平行线交直线AB于点M4,过B点做O’M4平行线,过O’点做直线AB平行线,两平行线相交于N4.
    由作图步骤可知▱B M4O’N4为菱形,
    由菱形性质可得N4坐标为(,6).
    综上所述N点坐标为(,)、(,)、(0,0)或(,6).
    【点睛】
    本题考查了一次函数的图象及其性质,菱形的判定,熟练掌握并应用菱形的性质是解第三问的关键:⑴菱形的四条边都相等;⑵菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.⑶菱形具有平行四边形的一切性质.⑷菱形是轴对称图形,对称轴是两条对角线所在的直线.⑸利用菱形的性质可证线段相等,角相等.
    5、见解析
    【分析】
    先根据平行线的性质得到∠DEC=∠BCE,∠DFC=∠GCF,再由角平分线的定义得到,,则∠DEC=∠DCE,∠DFC=∠DCF,推出DE=DC,DF=DC,则DE=DF,再由AD=CD,即可证明四边形AECF是平行四边形,再由∠ECF=∠DCE+∠DCF=,即可得证.
    【详解】
    证明:∵PQ∥BC,
    ∴∠DEC=∠BCE,∠DFC=∠GCF,
    ∵CE平分∠BCA,CF平分∠ACG,
    ∴,,
    ∴∠DEC=∠DCE,∠DFC=∠DCF,
    ∴DE=DC,DF=DC,
    ∴DE=DF,
    ∵点D是边AC的中点,
    ∴AD=CD,
    ∴四边形AECF是平行四边形,
    ∵∠BCA+∠ACG=180°,
    ∴∠ECF=∠DCE+∠DCF=,
    ∴平行四边形AECF是矩形.
    【点睛】
    本题主要考查了矩形的判定,平行线的性质,角平分线的定义,等腰三角形的性质与判定,等等,熟练掌握矩形的判定条件是解题的关键.

    相关试卷

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课时训练:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时训练,共30页。

    2021学年第十五章 四边形综合与测试随堂练习题:

    这是一份2021学年第十五章 四边形综合与测试随堂练习题,共25页。

    北京课改版八年级下册第十五章 四边形综合与测试习题:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试习题,共23页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map