初中数学第十五章 四边形综合与测试一课一练
展开
这是一份初中数学第十五章 四边形综合与测试一课一练,共31页。试卷主要包含了下列说法中正确的是,下列说法中,正确的是等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是( )
A.菱形 B.矩形 C.正方形 D.三角形
2、下列∠A:∠B:∠C:∠D的值中,能判定四边形ABCD是平行四边形的是( )
A.1:2:3:4 B.1:4:2:3
C.1:2:2:1 D.3:2:3:2
3、平面直角坐标系内与点P关于原点对称的点的坐标是( )
A. B. C. D.
4、如图,A,B,C是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是( )
A.A,B,C都不在 B.只有B
C.只有A,C D.A,B,C
5、下列说法中正确的是( )
A.从一个八边形的某个顶点出发共有8条对角线
B.已知C、D为线段AB上两点,若,则
C.“道路尽可能修直一点”,这是因为“两点确定一条直线”
D.用两个钉子把木条固定在墙上,用数学的知识解释是“两点之间线段最短”
6、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )
A.5 B.4 C.3 D.2
7、下列说法中,正确的是( )
A.若,,则
B.90′=1.5°
C.过六边形的每一个顶点有4条对角线
D.疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查
8、如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )
A.1 B.1.5 C.2 D.4
9、如图,菱形中,,.以为圆心,长为半径画,点为菱形内一点,连,,.若,且,则图中阴影部分的面积为( )
A. B. C. D.
10、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB=8,AD=16,BE=4,则MC的长为________.
2、如图,正方形ABCD的边长为做正方形,使A,B,C,D是正方形各边的中点;做正方形,使是正方形各边的中点……以此类推,则正方形的边长为__________.
3、如图,将长方形ABCD按图中方式折叠,其中EF、EC为折痕,折叠后、、E在一直线上,已知∠BEC=65°,那么∠AEF的度数是_____.
4、如图,在矩形中,,,点是线段上的一点(不与点,重合),将△沿折叠,使得点落在处,当△为等腰三角形时,的长为___________.
5、在矩形ABCD中,点E在AD边上,△BCE是以BE为一腰的等腰三角形,若AB=4,BC=5,则线段DE的长为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足是E,F是BC的中点,求证:BD=2EF.
2、如图,的对角线与相交于点O,过点B作BPAC,过点C作CPBD,与相交于点P.
(1)试判断四边形的形状,并说明理由;
(2)若将改为矩形,且,其他条件不变,求四边形的面积;
(3)要得到矩形,应满足的条件是_________(填上一个即可).
3、如图,四边形ABCD是平行四边形,∠BAC=90°.
(1)尺规作图:在BC上截取CE,使CE=CD,连接DE与AC交于点F,过点F作线段AD的垂线交AD于点M;(不写作法,保留作图痕迹)
(2)在(1)的条件下,猜想线段FM和CF的数量关系,并证明你的结论.
4、如图,在中,AD>AB,∠ABC的平分线交AD于点F,EFAB交BC于点E.
(1)求证:四边形ABEF是菱形;
(2)若AB=5,AE=6,的面积为36,求DF的长.
5、如图1,在平面直角坐标系中,且;
(1)试说明是等腰三角形;
(2)已知.写出各点的坐标:A( , ),B( , ),C( , ).
(3)在(2)的条件下,若一动点M从点B出发沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.
①若的一条边与BC平行,求此时点M的坐标;
②若点E是边AC的中点,在点M运动的过程中,能否成为等腰三角形?若能,求出此时点M的坐标;若不能,请说明理由.
-参考答案-
一、单选题
1、B
【分析】
先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.
【详解】
解:如图,∵、、、分别是、、、的中点,
∴,,,
∴四边形是平行四边形,
∵,
∴,
∴平行四边形是矩形,
又与不一定相等,
与不一定相等,
矩形不一定是正方形,
故选:B.
【点睛】
本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.
2、D
【分析】
两组对角分别相等的四边形是平行四边形,所以∠A和∠C是对角,∠B和∠D是对角,对角的份数应相等.
【详解】
解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件.
故选:D.
【点睛】
本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
3、C
【分析】
根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.
【详解】
解:由题意,得
点P(-2,3)关于原点对称的点的坐标是(2,-3),
故选:C.
【点睛】
本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
4、D
【分析】
根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角形斜边上的中线性质即可得.
【详解】
解:如图所示:连接BD,
∵,,,
∴,
∴为直角三角形,
∵D为AC中点,
∴,
∵覆盖半径为300 ,
∴A、B、C三个点都被覆盖,
故选:D.
【点睛】
题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键.
5、B
【分析】
根据n边形的某个顶点出发共有(n-3)条对角线即可判断A;根据线段的和差即可判断B;根据两点之间,线段最短即可判断C;根据两点确定一条直线即可判断D.
【详解】
解:A、从一个八边形的某个顶点出发共有5条对角线,说法错误,不符合题意;
B、已知C、D为线段AB上两点,若AC=BD,则AD=BC,说法正确,符合题意;
C、“道路尽可能修直一点”,这是因为“两点之间,线段最短”,说法错误,不符合题意;
D、用两个钉子把木条固定在墙上,用数学的知识解释是“两点确定一条直线”,说法错误,不符合题意;
故选B.
【点睛】
本题主要考查了多边形对角线问题,线段的和差,两点之间,线段最短,两点确定一条直线等等,熟知相关知识是解题的关键.
6、A
【分析】
利用直角三角形斜边的中线的性质可得答案.
【详解】
解:∵∠C=90°,若D为斜边AB上的中点,
∴CD=AB,
∵AB的长为10,
∴DC=5,
故选:A.
【点睛】
此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.
7、B
【分析】
由等式的基本性质可判断A,由 可判断B,由过边形的一个顶点可作条对角线可判断C,由全面调查与抽样调查的含义可判断D,从而可得答案.
【详解】
解:若,则故A不符合题意;
90′=故B符合题意;
过六边形的每一个顶点有3条对角线,故C不符合题意;
疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D不符合题意;
故选:B.
【点睛】
本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.
8、C
【分析】
取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解.
【详解】
解:取线段AC的中点G,连接EG,如图所示.
∵AC=BC=8,∠BCA=60°,
∴△ABC为等边三角形,且AD为△ABC的对称轴,
∴CD=CG=AB=4,∠ACD=60°,
∵∠ECF=60°,
∴∠FCD=∠ECG,
在△FCD和△ECG中,
,
∴△FCD≌△ECG(SAS),
∴DF=GE.
当EG∥BC时,EG最小,
∵点G为AC的中点,
∴此时EG=DF=CD=BC=2.
故选:C.
【点睛】
本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.
9、C
【分析】
过点P作交于点M,由菱形得,,由,得,,故可得,,根据SAS证明,求出,即可求出.
【详解】
如图,过点P作交于点M,
∵四边形ABCD是菱形,
∴,,
∵,,
∴,,
∴,,
在与中,
,
∴,
∴,
在中,,
∴,
,即,
解得:,
∴.
故选:C.
【点睛】
此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.
10、C
【分析】
利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.
【详解】
解:A、不是中心对称图形,故A错误.
B、不是中心对称图形,故B错误.
C、是中心对称图形,故C正确.
D、不是中心对称图形,故D错误.
故选:C.
【点睛】
本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.
二、填空题
1、10
【分析】
过E作EF⊥AD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出△ANM≌△ENM,可得AM=EM,根据矩形ABCD,得出∠B=∠A=∠D=90°,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可.
【详解】
解:过E作EF⊥AD于F,
∵矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,
∴△ANM≌△ENM,
∴AM=EM,
∵矩形ABCD,
∴∠B=∠A=∠D=90°,
∵FE⊥AD,
∴∠AFE=∠B=∠A=90°,
∴四边形ABEF为矩形,
∴AF=BE=4,FE=AB=8,
设AM=EM=m,FM=m-4
在Rt△FEM中,根据勾股定理,即,
解得m=10,
∴MD=AD-AM=16-10=6,
在Rt△MDC中,
∴MC=.
故答案为10.
【点睛】
本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键.
2、
【分析】
利用正方形ABCD的及勾股定理,求出的长,再根据勾股定理求出和的长,找出规律,即可得出正方形的边长.
【详解】
解:∵A,B,C,D是正方形各边的中点
∴,
∵正方形ABCD的边长为,即AB=,
∴,解得:,
∴==2,
同理==2,
==4 …,
∴,
∴=,
∴的边长为
故答案为:.
【点睛】
本题考查了正方形性质、勾股定理的应用,解此题的关键是能根据计算结果得出规律,本题具有一定的代表性,是一道比较好的题目.
3、25°
【分析】
利用翻折变换的性质即可解决.
【详解】
解:由折叠可知,∠EF=∠AEF,∠EC=∠BEC=65°,
∵∠EF+∠AEF+∠EC+∠BEC=180°,
∴∠EF+∠AEF=50°,
∴∠AEF=25°,
故答案为:25°.
【点睛】
本题考查了折叠的性质,熟练掌握折叠的性质是解题的关键.
4、或
【分析】
根据题意分,,三种情况讨论,构造直角三角形,利用勾股定理解决问题.
【详解】
解:∵四边形是矩形
∴,
∵将△沿折叠,使得点落在处,
∴
,,
设,则
①当时,如图
过点作,则四边形为矩形
,
在中
在中
即
解得
②当时,如图,设交于点,
设
垂直平分
在中
即
在中,
即
联立,解得
③当时,如图,
又
垂直平分
垂直平分
此时重合,不符合题意
综上所述,或
故答案为:或
【点睛】
本题考查了矩形的性质,勾股定理,等腰三角形的性质与判定,垂直平分线的性质,分类讨论是解题的关键.
5、2.5或2.
【分析】
需要分类讨论:①BE1=E1C,此时点E1是BC的中垂线与AD的交点;②BE=BC,在直角△ABE中,利用勾股定理求得AE的长度,然后求得DE的长度即可.
【详解】
解:①当BE1=E1C时,点E1是BC的中垂线与AD的交点,;
②当BC=BE=5时,在直角△ABE中,AB=4,则,
∴.
综上所述,线段DE的长为2.5或2.
故答案是:2.5或2.
【点睛】
本题考查矩形的性质和等腰三角形的性质,勾股定理,在此题中,没有确定等腰三角形的底边,所以需要分类讨论,以防漏解.
三、解答题
1、见解析.
【分析】
先证明 再证明EF是△CDB的中位线,从而可得结论.
【详解】
证明:∵AD=AC,AE⊥CD
∴CE=ED
∵F是BC的中点
∴EF是△CDB的中位线
∴BD=2EF
【点睛】
本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.
2、(1)平行四边形,理由见解析;(2)四边形的面积为24;(3)AB=BC或AC⊥BD等(答案不唯一)
【分析】
(1)利用平行四边形的判定:两组对边分别平行的四边形是平行四边形,即可证明.
(2)利用矩形的性质,得到对角线互相平分,进而证明四边形是菱形,分别求出菱形的对角线长度,利用对角线乘积的一半,求解面积即可.
(3)添加的条件只要可以证明即可得到矩形.
【详解】
解:(1)四边形BPCO是平行四边形,
∵BP∥AC,CP∥BD,
∴四边形BPCO是平行四边形.
(2)连接OP.
∵四边形ABCD是矩形,
∴OB=BD,OC=AC,AC=BD,∠ABC=90°,
∴OB=OC.
又四边形BPCO是平行四边形,
∴□BPCO是菱形.
∴OP⊥BC.
又∵AB⊥BC,
∴OP∥AB.
又∵AC∥BP,
四边形是平行四边形,
∴OP=AB=6.
∴S菱形BPCO=.
(3)AB=BC或AC⊥BD等(答案不唯一).
当AB=BC时,为菱形,此时有:,利用含有的平行四边形为矩形,即可得到矩形,
当AC⊥BD时,利用含有的平行四边形为矩形,即可得到矩形.
【点睛】
本题主要是考查了平行四边形、矩形和菱形的判定和性质,熟练掌握特殊四边形的判定和性质,是求解该类问题的关键.
3、(1)图形见解析;(2),证明见解析
【分析】
(1)以C为圆心CD长为半径画弧于BC交点即为E;连DE与AC交点即为F;过F作AD的垂直平分线与AD交点即为M;
(2)证明DF平分,再利用角平分线的性质判定即可.
【详解】
(1)图形如下:
(2),证明如下:
由(1)可得:,CE=CD
∴
∵四边形ABCD是平行四边形
∴AD∥BC,AB∥CD
∴,
∴
即DF平分
∵∠BAC=90°
∴
∴
【点睛】
本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定与性质.
4、(1)见解析;(2)2.5.
【分析】
(1)根据平行四边形的性质和角平分线的性质说明∠ABF=∠AFB、可得AB=AF,同理可得AB=AF,再由AF∥BE可得四边形ABEF是菱形;
(2)过A作AH⊥BE垂足为E,根据菱形的性质可得AO=EO、BO=FO,AF=EF=AB=5,AE⊥BF,利用勾股定理可得AO的长,进而可得AE长,利用菱形的面积公式计算出AH的长,然后根据ABCD的面积公式求出AD,最后根据线段的和差即可解答.
【详解】
(1)证明:四边形ABCD是平行四边形,
∴AD//BC,即AF//BE
∴∠FBE=∠AFB,
∵∠ABC的平分线交AD于点F,
∴∠ABF=∠EBF,
∴∠ABF=∠AFB,
∴AB=AF,
又∵AB//EF,AF//BE
∴四边形ABEF是平行四边形,
∵AB=AF,
∴四边形ABEF是菱形;
(2)如图:过A作AH⊥BE垂足为H,
∵四边形ABCD是菱形,
∴AO=EO,BO=FO,AF=AB=5,AE⊥BF,
∵AE=6,
∴AO=3,
∴BO=
∴BF=8,
∴S菱形ABEF=AE·BF=×8×6=24,
∴BE·AH=24,
∴AH=;
∵S平行四边形ABCD=BC·AH=36,
∴BC=
∵平行四边形ABCD
∴AD=BC=
∴FD=AD-AF=-5=2.5.
.
【点睛】
本题主要考查了菱形的判定与性质、平行四边形的性质以及面积的问题,灵活利用菱形的判定与性质、平行四边形的性质成为解答本题的关键.
5、(1)见解析;(2)12,0;-8,0;0,16;(3)①当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;②当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.
【分析】
(1)设,,,则,由勾股定理求出,即可得出结论;
(2)由的面积求出m的值,从而得到、、的长,即可得到A、B、C的坐标;
(3)①分当时,;当时,;得出方程,解方程即可;
②由直角三角形的性质得出,根据题意得出为等腰三角形,有3种可能:如果;如果;如果;分别得出方程,解方程即可.
【详解】
解:(1)证明:设,,,则,
在中,,
,
∴是等腰三角形;
(2)∵,,
∴,
∴,,,.
∴A点坐标为(12,0),B点坐标为(-8,0),C点坐标为(0,16),
故答案为:12,0;-8,0;0,16;
(3)①如图3-1所示,
当MN∥BC时,
∵AB=AC,
∴∠ABC=∠ACB,
∵MN∥BC,
∴∠AMN=∠ABC,∠ANM=∠ACB,
∴∠AMN=∠ANM,
∴AM=AN,
∴AM=BM,
∴M为AB的中点,
∵,
∴,
∴,
∴点M的坐标为(2,0);
如图3-2所示,当ON∥BC时,
同理可得,
∴,
∴M点的坐标为(4,0);
∴综上所述,当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;
②如图3-3所示,当OM=OE时,
∵E是AC的中点,∠AOC=90°,,
∴,
∴此时M的坐标为(0,10);
如图3-4所示,当时,
∴此时M点与A点重合,
∴M点的坐标为(12,0);
如图3-5所示,当OM=ME时,过点E作EF⊥x轴于F,
∵OE=AE,EF⊥OA,
∴,
∴,
设,则,
∵,
∴,
解得,
∴M点的坐标为(,0);
综上所述,当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.
【点睛】
本题主要考查了坐标与图形,勾股定理,等腰三角形的性质与判定,直角三角形斜边上的直线,三角形面积等等,解题的关键在于能够利用数形结合和分类讨论的思想求解.
相关试卷
这是一份2021学年第十五章 四边形综合与测试随堂练习题,共24页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时训练,共30页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题,共29页。