2020-2021学年第十五章 四边形综合与测试一课一练
展开
这是一份2020-2021学年第十五章 四边形综合与测试一课一练,共24页。
京改版八年级数学下册第十五章四边形章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,菱形中,,.以为圆心,长为半径画,点为菱形内一点,连,,.若,且,则图中阴影部分的面积为( )A. B. C. D.2、下列图形中,可以看作是中心对称图形的是( )A. B. C. D.3、如图,在中,,点,分别是,上的点,,,点,,分别是,,的中点,则的长为( ).A.4 B.10 C.6 D.84、下列图形中,可以看作是中心对称图形的是( )A. B.C. D.5、如图,小明从点A出发沿直线前进10m到达点B,向左转,后又沿直线前进10m到达点C,再向左转30°后沿直线前进10m到达点...照这样走下去,小明第一次回到出发点A,一共走了( )米.A.80 B.100 C.120 D.1406、下图是文易同学答的试卷,文易同学应得( )A.40分 B.60分 C.80分 D.100分7、下列图形中,既是中心对称图形,又是轴对称图形的个数是( )A.1 B.2 C.3 D.48、下列图标中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.9、四边形的内角和与外角和的数量关系,正确的是( )A.内角和比外角和大180° B.外角和比内角和大180°C.内角和比外角和大360° D.内角和与外角和相等10、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个多边形的内角和是它的外角和的两倍,则这个多边形的边数为 ___.2、如图,圆柱形容器高为0.8m,底面周长为4.8m,在容器内壁离底部0.1m的点处有一只蚊子,此时一只壁虎正好在容器的顶部点处,若容器壁厚忽略不计,则壁虎捕捉蚊子的最短路程是______m.
3、如图,在矩形ABCD中,对角线AC,BD相交于O,EF过点O分别交AB,CD于E,F,已知AB=8cm,AD=5cm,那么图中阴影部分面积为_____cm2.4、如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为________.5、将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于______.三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形ABCD中,DF=AE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.2、如图,在长方形中,,,动点沿着的方向运动,到点运动停止,设点运动的路程为,的面积为.(1)点在边上,求关于的函数表达式.(2)点在边上,的面积是否发生变化?请说明理由.(3)点在边上,的面积是否发生变化?如果发生变化,求出面积的变化范围,并写出关于的函数表达式;如果没有发生变化,求出此时的面积.3、已知:如图,,,AD是BC上的高线,CE是AB边上的中线,于G.(1)若,求线段AC的长;(2)求证:.4、如图,在Rt△ABC中,∠ACB=90°,D为AB中点,.(1)试判断四边形BDCE的形状,并证明你的结论;(2)若∠ABC=30°,AB=4,则四边形BDCE的面积为 .5、如图,正方形ABCD的边长为4,连接对角线AC,点E为BC边上一点,将线段AE绕点A逆时针旋转45°得到线段AF,点E的对应点F恰好落在边CD上,过F作FM⊥AC于点M.(1)求证:BE=FM;(2)求BE的长度. -参考答案-一、单选题1、C【分析】过点P作交于点M,由菱形得,,由,得,,故可得,,根据SAS证明,求出,即可求出.【详解】如图,过点P作交于点M,∵四边形ABCD是菱形,∴,,∵,,∴,,∴,,在与中,,∴,∴,在中,,∴,,即,解得:,∴.故选:C.【点睛】此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.2、A【分析】根据中心对称图形的概念(在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,则为中心对称图形)求解即可.【详解】解:B、C、D三个选项的图形旋转后,均不能与原来的图形重合,不符合题意,A选项是中心对称图形.故本选项正确.故选:A.【点睛】本题考查了中心对称图形的概念,深刻理解中心对称图形的概念是解题关键.3、B【分析】根据三角形中位线定理得到PD=BF=6,PD∥BC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵点P,D分别是AF,AB的中点,∴PD=BF=6,PD//BC,∴∠PDA=∠CBA,同理,QD=AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ==10,故选:B.【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.5、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案.【详解】解:由 可得:小明第一次回到出发点A,一个要走米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为得到一共要走12个10米”是解本题的关键.6、B【分析】分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.【详解】解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,∴文易同学答对3道题,得60分,故选:B.【点睛】本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键7、B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解【详解】第一个图形是中心对称图形,又是轴对称图形,第二个图形是中心对称图形,又是轴对称图形,第三个图形不是中心对称图形,是轴对称图形,第四个图形不是中心对称图形,是轴对称图形,综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形.故选:B.【点睛】点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、B【分析】由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,故本选项符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.9、D【分析】直接利用多边形内角和定理分别分析得出答案.【详解】解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.故选:D.【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.10、B【分析】根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积.【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2.∵一个直角三角形的周长为3+,∴AB+BC=3+-2=1+.等式两边平方得(AB+BC)2= (1+) 2,即AB2+BC2+2AB•BC=4+2,∵AB2+BC2=AC2=4,∴2AB•BC=2,AB•BC=,即三角形的面积为×AB•BC=.故选:B.【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出AC•BC的值是解此题的关键,值得学习应用.二、填空题1、6【分析】根据内角和等于外角和的2倍则内角和是720°利用多边形内角和公式得到关于边数的方程,解方程就可以求出多边形的边数.【详解】解:根据题意,得(n﹣2)•180=360×2,解得:n=6.故这个多边形的边数为6.故答案为:6.【点睛】本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.2、2.5.【分析】如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,然后分别求出AC,BC的长度,利用勾股定理求解即可.【详解】解:如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,∵圆柱形容器高为0.8m,底面周长为4.8m在容器内壁离底部0.1m的点B处有一只蚊子,此时一只壁虎正好在容器的顶部点A处,∴,,,过点B作BC⊥AD于C,∴∠BCD =90°,∵四边形ADEF是矩形,∴∠ADE=∠DEF=90°∴四边形BCDE是矩形,∴,,∴,∴,答:则壁虎捕捉蚊子的最短路程是2.5m.故答案为:2.5.
【点睛】本题主要考查了平面展开—最短路径,解题的关键在于能够根据题意确定展开图中AB的长即为所求.3、10【分析】利用矩形性质,求证,将阴影部分的面积转为的面积,最后利用中线平分三角形的面积,求出的面积,即可得到阴影部分的面积.【详解】解:四边形为矩形,,,, , 在与中,, 阴影部分的面积最后转化为了的面积,中,, 平分, 阴影部分的面积:,故答案为:10.【点睛】本题主要是考查了矩形的性质以全等三角形的判定与性质以及中线平分三角形面积,熟练利用矩形性质,证明三角形全等,将阴影部分面积转化为其他图形的面积,这是解决本题的关键.
4、【分析】根据题意连接BE,连接AE交FG于O,如图,利用菱形的性质得△BDC为等边三角形,∠ADC=120°,再在在Rt△BCE中计算出BE=CE=,然后证明BE⊥AB,利用勾股定理计算出AE,从而得到OA的长;设AF=x,根据折叠的性质得到FE=FA=x,在Rt△BEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在Rt△AOF中利用勾股定理计算出OF,再利用余弦的定义求解即可.【详解】解:连接BE,连接AE交FG于O,如图,
∵四边形ABCD为菱形,∠A=60°,
∴△BDC为等边三角形,∠ADC=120°,
∵E点为CD的中点,
∴CE=DE=1,BE⊥CD,
在Rt△BCE中,BE=CE=,
∵AB∥CD,
∴BE⊥AB,
∴.
∴,
设AF=x,
∵菱形纸片翻折,使点A落在CD的中点E处,
∴FE=FA=x,
∴BF=2-x,
在Rt△BEF中,(2-x)2+()2=x2,解得:,
在Rt△AOF中,,
∴.
故答案为: .【点睛】本题考查了折叠的性质以及菱形的性质,注意掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5、【分析】利用三角形的内角和定理以及折叠的性质,求出,,利用四边形内角和为,即可求出∠2.【详解】解:在中,,在中,, 由折叠性质可知: ,四边形的内角和为,,,, , ,,且∠1=85°,,故答案为:.【点睛】本题主要是考查了三角形和四边形的内角和定理,熟练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度数,这是解决该题的关键.三、解答题1、(1)见解析;(2)90°【分析】(1)利用正方形的性质得出AD=AB,∠DAB=∠ABC=90°,再证明Rt△DAF≌Rt△ABE即可得出结论;
(2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠BAE+∠DFA=90°,最后用三角形的内角和定理即可得出结论.【详解】(1)证明:∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在Rt△DAF和Rt△ABE中,,∴Rt△DAF≌Rt△ABE(HL),即△DAF≌△ABE.(2)解:由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DFA=∠BAE+∠DFA=∠DAB=90°,∴∠AOD=180°﹣(∠BAE+∠DFA)=90°.【点睛】本题主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和定理,判断出Rt△DAF≌Rt△ABE是解本题的关键.2、(1);(2)的面积不发生变化,理由见解析;(3)的面积发生变化,,.【分析】(1)由题意可求出的长,利用三角形的面积公式即可得到求与的关系式;(2)当点在上运动时,的面积不发生改变,过点作于点,利用三角形的面积公式可得的面积为18,是个定值;(3)先求出的长,再利用三角形的面积公式可得与的函数关系式,然后利用点在上可得出的范围,由此即可得出面积的变化范围.【详解】解:(1)在长方形中,,,,由题意知,当点在边上时,,且,;(2)的面积不发生变化.理由如下:如图,过点作于点,则,,是一个定值,所以的面积不发生变化;(3)的面积发生变化,求解过程如下:当点在边上时,,且,,,,,,即.
【点睛】本题考查了一次函数的几何应用、长方形的性质等知识点,熟练掌握一次函数的求解方法是解题关键.3、(1);(2)见解析【分析】(1)根据30°角所对直角边等于斜边的一半,得到AD=3,根据等腰直角三角形,得到CD=AD=3,根据勾股定理,得到AC的长即可;(2)根据斜边上的中线等于斜边的一半,得到DE=DC,根据等腰三角形三线合一性质,证明即可.【详解】(1),;(2)连接DE,,,,,,.【点睛】本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.4、(1)四边形是菱形,证明见解析;(2)【分析】(1)先证明四边形是平行四边形,再利用直角三角形斜边上的中线等于斜边的一半,证明从而可得结论;(2)先求解 再求解的面积,再利用菱形的性质可得菱形的面积.【详解】证明:(1)四边形是菱形,理由如下: , 四边形是平行四边形, ∠ACB=90°,D为AB中点, 四边形是菱形.(2) ∠ABC=30°,AB=4,∠ACB=90°, D为AB中点, 四边形是菱形, 故答案为:【点睛】本题考查的是平行四边形的判定,菱形的判定与性质,直角三角形斜边上的中线的性质,含的直角三角形的性质,勾股定理的应用,掌握“有一组邻边相等的平行四边形是菱形”是解本题的关键.5、(1)见解析;(2)—4【分析】(1)由旋转和正方形的性质得出∠FAM=∠EAB,再证≌即可;(2)求出正方形对角线长,再求出MC=—4即可.【详解】(1)证明:在正方形ABCD中,线段AE绕点A逆时针旋转45°得到线段AF∠CAB=45°,∠EAF=45°,AE=AF ∠FAM=∠EAB ∵FM⊥AC∠FMA=∠B=90°≌(AAS) BE=FM (2)在正方形ABCD中,边长为4AC=,∠DCA=45° ≌ ∴AM=AB=4 MC=AC—AM=—4 ∵是等腰直角三角形BE=MF=MC=—4【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,解题关键是熟练运用正方形的性质和全等三角形的判定进行证明推理.
相关试卷
这是一份北京课改版八年级下册第十五章 四边形综合与测试巩固练习,共27页。试卷主要包含了下列说法中,正确的是,下列图形中不是中心对称图形的是,如图,M等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题,共1页。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共22页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。