初中数学北京课改版八年级下册第十五章 四边形综合与测试课堂检测
展开
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课堂检测,共28页。试卷主要包含了以下分别是回收,下列图形中,是中心对称图形的是等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在△ABC中,点E,F分别是AB,AC的中点.已知∠B=55°,则∠AEF的度数是( )
A.75° B.60° C.55° D.40°
2、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )
A.46.5cm B.22.5cm C.23.25cm D.以上都不对
3、垦区小城镇建设如火如荼,小红家买了新楼.爸爸在正三角形、正方形、正五边形、正六边形四种瓷砖中,只购买一种瓷砖进行平铺,有几种购买方式( )
A.1种 B.2种 C.3种 D.4种
4、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( ).
A. B. C. D.
5、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为( )
A. B. C.4.5 D.4.3
6、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )
A.①②③ B.②③④ C.①②④ D.①④
7、如图,四边形ABCD中,∠A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )
A. B. C. D.
8、下列图形中,是中心对称图形的是( )
A. B.
C. D.
9、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA=,则点C的坐标为( )
A.(,1) B.(1,1) C.(1,) D.(+1,1)
10、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )
A.三角形 B.四边形 C.五边形 D.六边形
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平行四边形ABCD中,若∠A=130°,则∠B=______,∠C=______,∠D=______.
2、七边形内角和的度数是__________.
3、一个凸边形的边数与对角线条数的和小于20,且能被5整除,则______.
4、如图,在长方形ABCD中,.在DC上找一点E,沿直线AE把折叠,使D点恰好落在BC上,设这一点为F,若的面积是54,则的面积=______________.
5、如图,平行四边形ABCD,AD=5,AB=8,点A的坐标为(-3,0)点C的坐标为______.
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图:五边形ABCDE的内角都相等,DF⊥AB.
(1)则∠CDF=
(2)若ED=CD,AE=BC,求证:AF=BF.
2、我们知道正多边形的定义是:各边相等,各角也相等的多边形叫做正多边形.
(1)如图①,在各边相等的四边形ABCD中,当AC=BD时,四边形ABCD 正四边形;(填“是”或“不是”)
(2)如图②,在各边相等的五边形ABCDE中,AC=CE=EB=BD=DA,求证:五边形ABCDE是正五边形;
(3)如图③,在各边相等的五边形ABCDE中,减少相等对角线的条数也能判定它是正五边形,问:至少需要几条对角线相等才能判定它是正五边形?请说明理由.
3、如图,在长方形中,,,动点沿着的方向运动,到点运动停止,设点运动的路程为,的面积为.
(1)点在边上,求关于的函数表达式.
(2)点在边上,的面积是否发生变化?请说明理由.
(3)点在边上,的面积是否发生变化?如果发生变化,求出面积的变化范围,并写出关于的函数表达式;如果没有发生变化,求出此时的面积.
4、(教材呈现)如图是华师版八年级下册数学教材第117页的部分内容.
结合图①,写出完整的证明过程
(应用)如图②,直线EF分别交矩形ABCD的边AD,BC于点E,F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=4,BC=5,则EF的长为 .
(拓展)如图③,直线EF分别交平行四边形ABCD的边AD,BC于点E,F,将平行四边形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=,BC=6,∠C=45°,则五边形ABFEG的周长为 .
5、如图,矩形ABCD中,,,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形.
(2)当四边形BEDF是菱形时,求EF的长.
-参考答案-
一、单选题
1、C
【分析】
证EF是△ABC的中位线,得EF∥BC,再由平行线的性质即可求解.
【详解】
解:∵点E,F分别是AB,AC的中点,
∴EF是△ABC的中位线,
∴EF∥BC,
∴∠AEF=∠B=55°,
故选:C.
【点睛】
本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EF∥BC是解题的关键.
2、C
【分析】
如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,则,,,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.
【详解】
解:如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,
∴,,,
∴△DEF的周长,
同理可得:△GHI的周长,
∴第三次作中位线得到的三角形周长为,
∴第四次作中位线得到的三角形周长为
∴第三次作中位线得到的三角形周长为
∴这五个新三角形的周长之和为,
故选C.
【点睛】
本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.
3、C
【分析】
从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.
【详解】
解:正三角形每个内角是60°,能被360°整除,所以能单独镶嵌成一个平面;
正方形每个内角是90°,能被360°整除,所以能单独镶嵌成一个平面;
正五边形每个内角是108°,不能被360°整除,所以不能单独镶嵌成一个平面;
正六边形每个内角是120°,能被360°整除,所以能单独镶嵌成一个平面.
故只购买一种瓷砖进行平铺,有3种方式.
故选:C.
【点睛】
本题主要考查了平面镶嵌.解这类题,根据组成平面镶嵌的条件,逐个排除求解.
4、C
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.
【详解】
解:A、此图形不是中心对称图形,故本选项不符合题意;
B、此图形不是中心对称图形,故此选项不符合题意;
C、此图形是中心对称图形,故此选项符合题意;
D、此图形不是中心对称图形,故此选项不符合题意.
故选:C.
【点睛】
此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.
5、A
【分析】
根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH=DE,利用勾股定理求出DE的长即可得出答案.
【详解】
解:∵四边形ABCD为正方形,
∴∠B=∠DCF=90°,BC=DC,
在△CBE和△DCF中,
,
∴△CBE≌△DCF(SAS),
∴∠BCE=∠CDF,
∵∠BCE+∠DCH=90°,
∴∠CDF+∠DCH=90°,
∴∠DHC=∠DHE=90°,
∵点G为DE的中点,
∴GH=DE,
∵AD=AB=6,AE=AB﹣BE=6﹣2=4,
∴,
∴GH=.
故选A.
【点睛】
本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.
6、C
【分析】
利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.
【详解】
∵CM、BN分别是高
∴△CMB、△BNC均是直角三角形
∵点P是BC的中点
∴PM、PN分别是两个直角三角形斜边BC上的中线
∴
故①正确
∵∠BAC=60゜
∴∠ABN=∠ACM=90゜−∠BAC=30゜
∴AB=2AN,AC=2AM
∴AN:AB=AM:AC=1:2
即②正确
在Rt△ABN中,由勾股定理得:
故③错误
当∠ABC=60゜时,△ABC是等边三角形
∵CM⊥AB,BN⊥AC
∴M、N分别是AB、AC的中点
∴MN是△ABC的中位线
∴MN∥BC
故④正确
即正确的结论有①②④
故选:C
【点睛】
本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.
7、A
【分析】
根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值. 连接DB,过点D作DH⊥AB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;
【详解】
解:∵ED=EM,MF=FN,
∴EF=DN,
∴DN最大时,EF最大,
∴N与B重合时DN=DB最大,
在Rt△ADH中, ∵∠A=60°
∴AH=2×=1,DH=,
∴BH=AB﹣AH=3﹣1=2,
∴DB=,
∴EFmax=DB=,
∴EF的最大值为.
故选A
【点睛】
本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键.
8、D
【分析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
【详解】
A、不是中心对称图形,故此选项不合题意;
B、不是中心对称图形,故此选项不合题意;
C、不是中心对称图形,故此选项不合题意;
D、是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
本题考查了中心对称图形的概念,理解概念并知道一些常见的中心对称图形是关键.
9、B
【分析】
作CD⊥x轴,根据菱形的性质得到OC=OA=,在Rt△OCD中,根据勾股定理求出OD的值,即可得到C点的坐标.
【详解】
:作CD⊥x轴于点D,
则∠CDO=90°,
∵四边形OABC是菱形,OA=,
∴OC=OA=,
又∵∠AOC=45°,
∴∠OCD=90°-∠AOC=90°-45°=45°,
∴∠DOC=∠OCD,
∴CD=OD,
在Rt△OCD中,OC=,CD2+OD2=OC2,
∴2OD2=OC2=2,
∴OD2=1,
∴OD=CD=1(负值舍去),
则点C的坐标为(1,1),
故选:B.
【点睛】
此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.
10、A
【分析】
多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.
【详解】
解:多边形的外角和是360度,
又多边形的外角和是内角和的2倍,
多边形的内角和是180度,
这个多边形是三角形.
故选:A.
【点睛】
考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.
二、填空题
1、
【分析】
利用平行四边形的性质:邻角互补,对角相等,即可求得答案.
【详解】
解:在平行四边形ABCD中,、是的邻角,是的对角,
,,
故答案为: ,,.
【点睛】
本题主要是考查了平行四边形的性质:对角相等,邻角互补,熟练掌握平行四边形的性质,求解决本题的关键.
2、900°900度
【分析】
根据多边形内角和公式计算即可.
【详解】
解:七边形内角和的度数是,
故答案为:900°.
【点睛】
本题考查了多边形内角和公式,解题关键是熟记n边形内角和公式:.
3、5或6
【分析】
先把多边形的边数与对角线的条数之和因式分解,列不等式得出,两个连续整式的积小于40根据能被5整除,当n=5,能被5整除,当n-1=5,n=6,能被5整除即可 .
【详解】
解:<20,
∴,
∵能被5整除,
当n=5,能被5整除,
当n-1=5,n=6,能被5整除,
故答案为5或6.
【点睛】
本题考查因式分解,熟记n边形对角线条数的公式,列不等式,根据条件进行讨论是解题关键.
4、6
【分析】
根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面积公式解答即可.
【详解】
解:∵四边形ABCD是矩形
∴AB=CD=9,BC=AD
∵•AB•BF=54,
∴BF=12.
在Rt△ABF中,AB=9,BF=12,
由勾股定理得,.
∴BC=AD=AF=15,
∴CF=BC-BF=15-12=3.
设DE=x,则CE=9-x,EF=DE=x.
则x2=(9-x)2+32,
解得,x=5.
∴DE=5.
∴EC=DC-DE=9-5=4.
∴△FCE的面积=×4×3=6.
【点睛】
本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.
5、(8,4)
【分析】
先根据勾股定理得到OD的长,即可得到点D的坐标,再根据平行四边形的性质和平行x轴两点坐标特征即可得到点C的坐标.
【详解】
解:∵点A的坐标为(-3,0),
在Rt△ADO中,AD=5, AO=3,,
∴OD==,
∴D(0,4),
∵平行四边形ABCD,
∴AB=CD=8,AB∥CD,
∵AB在x轴上,
∴CD∥x轴,
∴C、D两点的纵坐标相同,
∴C(8,4) .
故答案为(8,4).
【点睛】
本题考查平行四边形性质,勾股定理,平行x轴两点坐标特征,解答本题的关键是熟练掌握平行于x轴的直线上的点的纵坐标相同,平行于y轴的直线上的点的横坐标相同.
三、解答题
1、(1)54°;(2)见解析.
【分析】
(1)根据多边形内角和度数可得每一个角的度数,然后再利用四边形DFBC内角和计算出∠CDF的度数;
(2)连接AD、DB,然后证明△DEA≌△DCB可得AD=DB,再根据等腰三角形的性质可得AF=BF.
【详解】
解:(1)∵五边形ABCDE的内角都相等,
∴∠C=∠B=∠EDC=180°×(5﹣2)÷3=108°,
∵DF⊥AB,
∴∠DFB=90°,
∴∠CDF=360°﹣90°﹣108°﹣108°=54°,
故答案为:54°.
(2)连接AD、DB,
在△AED和△BCD中,
,
∴△DEA≌△DCB(SAS),
∴AD=DB,
∵DF⊥AB,
∴AF=BF.
【点睛】
本题主要考查了多边形内角和公式,全等三角形的性质与判定,等腰三角形的性质与判定,熟练掌握多边形内角和公式是解题的关键.
2、(1)是;(2)见解析;(3)至少需要3条对角线相等才能判定它是正五边形,见解析
【分析】
(1)根据对角线相等的菱形是正方形,证明即可;
(2)由SSS证明△ABC≌△BCD≌△CDE≌△DEA≌△EAB得出∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,即可得出结论;
(3)由SSS证明△ABE≌△BCA≌△DEC得出∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,由SSS证明△ACE≌△BEC得出∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,由四边形ABCE内角和为360°得出∠ABC+∠ECB=180°,证出AB∥CE,由平行线的性质得出∠ABE=∠BEC,∠BAC=∠ACE,证出∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,即可得出结论;
【详解】
(1)解:结论:四边形ABCD是正四边形.
理由:∵AB=BC=CD=DA,
∴四边形ABCD是菱形,
∵AC=BD,
∴四边形ABCD是正方形.
∴四边形ABCD是正四边形.
故答案为:是.
(2)证明:∵凸五边形ABCDE的各条边都相等,
∴AB=BC=CD=DE=EA,
在△ABC、△BCD、△CDE、△DEA、△EAB中,
∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),
∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,
∴五边形ABCDE是正五边形;
(3)解:结论:至少需要3条对角线相等才能判定它是正五边形.
若AC=BE=CE,五边形ABCDE是正五边形,理由如下:
在△ABE、△BCA和△DEC中,
,
∴△ABE≌△BCA≌△DEC(SSS),
∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,
在△ACE和△BEC中,
∴△ACE≌△BEC(SSS),
∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,
∵四边形ABCE内角和为360°,
∴∠ABC+∠ECB=180°,
∴AB∥CE,
∴∠ABE=∠BEC,∠BAC=∠ACE,
∴∠CAE=∠CEA=2∠ABE,
∴∠BAE=3∠ABE,
同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,
∴五边形ABCDE是正五边形;
【点睛】
本题是四边形综合题目,考查了正多边形的判定、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键.
3、(1);(2)的面积不发生变化,理由见解析;(3)的面积发生变化,,.
【分析】
(1)由题意可求出的长,利用三角形的面积公式即可得到求与的关系式;
(2)当点在上运动时,的面积不发生改变,过点作于点,利用三角形的面积公式可得的面积为18,是个定值;
(3)先求出的长,再利用三角形的面积公式可得与的函数关系式,然后利用点在上可得出的范围,由此即可得出面积的变化范围.
【详解】
解:(1)在长方形中,,,
,
由题意知,当点在边上时,,且,
;
(2)的面积不发生变化.理由如下:
如图,过点作于点,
则,
,是一个定值,
所以的面积不发生变化;
(3)的面积发生变化,求解过程如下:
当点在边上时,,且,
,,
,
,
,
即.
【点睛】
本题考查了一次函数的几何应用、长方形的性质等知识点,熟练掌握一次函数的求解方法是解题关键.
4、【教材呈现】见解析;【应用】 ;【拓展】
【分析】
(教材呈现)由“ASA”可证△AOE≌△COF,可得OE=OF,由对角线互相平分的四边形是平行四边形可证四边形AFCE是平行四边形,即可证平行四边形AFCE是菱形;
(应用)过点F作FH⊥AD于H,由折叠的性质可得AF=CF,∠AFE=∠EFC,由勾股定理可求BF、EF的长,
(拓展)过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,由等腰直角三角形的性质可求AN=BN=3,由勾股定理可求AE=AF,再利用勾股定理可求EF的长,再求出五边形ABFEG的周长.
【详解】
解:(教材呈现)∵四边形ABCD是矩形,
∴AECF,
∴∠EAO=∠FCO,
∵EF垂直平分AC,
∴AO=CO,∠AOE=∠COF=90°,
∴△AOE≌△COF(ASA)
∴OE=OF,
又∵AO=CO,
∴四边形AFCE是平行四边形,
∵EF⊥AC,
∴平行四边形AFCE是菱形;
(应用)如图,连接AC、EC
由(教材呈现)可得平行四边形AFCE是菱形,
∴AF=CF,∠AFE=∠EFC,
∵AF2=BF2+AB2,
∴(5−BF)2=BF2+16,
∴BF=,
∴AF=CF=,
∵AB⊥BC,
∴△ABC是直角三角形
∴AC=
∵S四边形AFCE=,
∴
∴EF=,
故答案为:.
(拓展)如图,过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,
∵四边形ABCD是平行四边形,∠C=45°,
∴∠ABC=135°,
∴∠ABN=45°,
∵AN⊥BC,
∴∠ABN=∠BAN=45°,
∴△ANB是等腰直角三角形
∵AN2+BN2=AB2,AN=BN
∴AN=BN=3,NC=6+3=9
∵将▱ABCD沿EF翻折,使点C的对称点与点A重合,
∴AF=CF,∠AFE=∠EFC,
∵ADBC,
∴∠AEF=∠EFC=∠AFE,
∴AE=AF,
∵AF2=AN2+NF2,
∴AF2=9+(9−AF)2,
∴AF=5,
∴AE=AF=5,
∵ANMF,ADBC,
∴四边形ANFM是平行四边形,
∵AN⊥BC,
∴四边形ANFM是矩形,
∴AN=MF=3,
∴AM==4,
∴ME=AE−AM=1,
∴EF==,
∵BF=NF-BN=9-AF-BN=1,DE=GE=AD-AE=1
∴五边形ABFEG的周长为AB+BF+EF+GE+AG=AB+BF+EF+CD+DE=+1+++1=
故答案为:.
【点睛】
本题是四边形综合题,考查了平行四边形的性质,菱形的性质,折叠的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键.
5、(1)证明见解析;(2)
【分析】
(1)由题意知,,通过得到,证明四边形BEDF平行四边形.
(2)四边形BEDF为菱形,,;设,;在中用勾股定理,解出的长,在中用勾股定理,得到的长,由得到的值.
【详解】
(1)证明:∵四边形ABCD是矩形,O是BD的中点
∴,
在和中
∴(ASA)
∴
∴四边形BEDF是平行四边形.
(2)解:∵四边形BEDF为菱形,
∴,
又∵,
∴,
设,则
在中,
∴
在中,
∴.
【点睛】
本题考察了平行四边形的判定,三角形全等,菱形的性质,勾股定理.解题的关键与难点在于对平行四边形的性质的灵活运用.
相关试卷
这是一份2021学年第十五章 四边形综合与测试随堂练习题,共25页。
这是一份数学八年级下册第十五章 四边形综合与测试当堂达标检测题,共30页。
这是一份北京课改版八年级下册第十五章 四边形综合与测试一课一练,共31页。试卷主要包含了如图,M等内容,欢迎下载使用。