|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年最新精品解析京改版八年级数学下册第十五章四边形达标测试试卷(名师精选)
    立即下载
    加入资料篮
    2022年最新精品解析京改版八年级数学下册第十五章四边形达标测试试卷(名师精选)01
    2022年最新精品解析京改版八年级数学下册第十五章四边形达标测试试卷(名师精选)02
    2022年最新精品解析京改版八年级数学下册第十五章四边形达标测试试卷(名师精选)03
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十五章 四边形综合与测试当堂检测题

    展开
    这是一份北京课改版八年级下册第十五章 四边形综合与测试当堂检测题,共29页。

    京改版八年级数学下册第十五章四边形达标测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若∠MDB=∠A,则四边形DMBE的周长为( )

    A.16 B.24 C.32 D.40
    2、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形.该小正方形的序号是(  )

    A. B. C. D.
    3、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为(  )

    A.180° B.360°
    C.540° D.不能确定
    4、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )
    A. B. C. D.
    5、下列图形中,既是轴对称图形又是中心对称图形的是(  )
    A. B. C. D.
    6、下列图形中,可以看作是中心对称图形的是( )
    A. B.
    C. D.
    7、下列图案中,是中心对称图形,但不是轴对称图形的是( )
    A. B.
    C. D.
    8、在平面直角坐标系中,点关于原点对称的点的坐标是( )
    A. B. C. D.
    9、在平行四边形ABCD中,∠A=30°,那么∠B与∠A的度数之比为( )
    A.4:1 B.5:1 C.6:1 D.7:1
    10、如图,在正方形有中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作⊥DE交DG的延长线于点H,连接,那么的值为( )

    A.1 B. C. D.2
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,直线l经过正方形ABCD的顶点B,点A,C到直线l的距离分别是1,3,则正方形ABCD的面积是 _____.

    2、判断:
    (1)菱形的对角线互相垂直且相等(________)
    (2)菱形的对角线把菱形分成四个全等的直角三角形(________)
    3、一个多边形的内角和比它的外角和的2倍还多180°,则它是________边形.
    4、如图,已知在矩形中,,,将沿对角线AC翻折,点B落在点E处,连接,则的长为_________.


    5、如图,直线l1⊥l3,l2⊥l3,垂足分别为P、Q,一块含有45°的直角三角板的顶点A、B、C分别在直线l1、l2、线段PQ上,点O是斜边AB的中点,若PQ等于,则OQ的长等于 _____.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在Rt△ABC中,∠ACB=90°,D为AB中点,.
    (1)试判断四边形BDCE的形状,并证明你的结论;
    (2)若∠ABC=30°,AB=4,则四边形BDCE的面积为 .

    2、(教材重现)如图是数学教材第135页的部分截图.
    在多边形中,三角形是最基本的图形.如图4.4.5所示,每一个多边形都可以分割成若干个三角形.

    数一数每个多边形中三角形的个数,你能发现什么规律?
    在多边形中,连接不相邻的两个顶点,所得到的线段称为多边形的对角线.
    (问题思考)结合如图思考,从多边形的一个顶点出发,可以得到的对角线的数量,并填写表:
    多边形边数



    ……
    十二
    ……
    n
    从一个顶点出发,得到对角线的数量
    1条
       
       
    ……
       
    ……
       
    (问题探究)n边形有n个顶点,每个顶点分别连接对角线后,每条对角线重复连接了一次,由此可推导出,n边形共有    对角线(用含有n的代数式表示).
    (问题拓展)
    (1)已知平面上4个点,任意三点不在同一直线上,一共可以连接    条线段.
    (2)已知平面上共有15个点,任意三点不在同一直线上,一共可以连接    条线段.
    (3)已知平面上共有x个点,任意三点不在同一直线上,一共可以连接    条线段(用含有x的代数式表示,不必化简).
    3、在Rt△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点,过点D作DE⊥AB,交BC于点E,连接AE,取AE的中点P,连接DP,CP.

    (1)观察猜想: 如图(1),DP与CP之间的数量关系是   ,DP与CP之间的位置关系是   .
    (2)类比探究: 将图(1)中的△BDE绕点B逆时针旋转45°,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明;若不成立,请说明理由.
    (3)问题解决: 若BC=3BD=3, 将图(1)中的△BDE绕点B在平面内自由旋转,当BE⊥AB时,请直接写出线段CP的长.
    4、如图,平行四边形ABCD中,点E、F分别在CD、BC的延长线上,.

    (1)求证:D是EC中点;
    (2)若,于点F,直接写出图中与CF相等的线段.
    5、(1)如图a,矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.

    (2)如图b,如果题目中的矩形变为菱形,结论应变为什么?说明理由.
    (3)如图c,如果题目中的矩形变为正方形,结论又应变为什么?说明理由.

    -参考答案-
    一、单选题
    1、C
    【分析】
    由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE//BC,DE=BC,根据平行线的性质可得∠ADE=∠ABC=90°,利用ASA可证明△MBD≌△EDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案.
    【详解】
    ∵D,E分别是AB,AC的中点,
    ∴AE=CE,AD=BD,DE为△ABC的中位线,
    ∴DE//BC,DE=BC,
    ∵∠ABC=90°,
    ∴∠ADE=∠ABC=90°,
    在△MBD和△EDA中,,
    ∴△MBD≌△EDA,
    ∴MD=AE,DE=MB,
    ∵DE//MB,
    ∴四边形DMBE是平行四边形,
    ∴MD=BE,
    ∵AC=18,BC=14,
    ∴四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32.
    故选:C.
    【点睛】
    本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.
    2、B
    【分析】
    利用中心对称图形的定义判断即可.
    【详解】
    解:根据中心对称图形的定义可知,②满足条件.
    故选:.
    【点睛】
    本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键.
    3、B
    【分析】
    设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360°,即可求解.
    【详解】
    解:设BE与DF交于点M,BE与AC交于点N,

    ∵ ,
    ∴ ,
    ∵,
    ∴ .
    故选:B
    【点睛】
    本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.
    4、B
    【分析】
    根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积.
    【详解】
    解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2.

    ∵一个直角三角形的周长为3+,
    ∴AB+BC=3+-2=1+.
    等式两边平方得(AB+BC)2= (1+) 2,
    即AB2+BC2+2AB•BC=4+2,
    ∵AB2+BC2=AC2=4,
    ∴2AB•BC=2,AB•BC=,
    即三角形的面积为×AB•BC=.
    故选:B.
    【点睛】
    本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出AC•BC的值是解此题的关键,值得学习应用.
    5、D
    【分析】
    根据轴对称图形与中心对称图形的概念求解即可.
    【详解】
    解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;
    B.是轴对称图形,不是中心对称图形,故此选项不合题意;
    C.是轴对称图形,不是中心对称图形,故此选项符合题意;
    D.是轴对称图形,也是中心对称图形,故此选项不合题意.
    故选D.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
    6、C
    【分析】
    根据中心对称图形的定义进行逐一判断即可.
    【详解】
    解:A、不是中心对称图形,故此选项不符合题意;
    B、不是中心对称图形,故此选项不符合题意;
    C、是中心对称图形,故此选项符合题意;
    D、不是中心对称图形,故此选项不符合题意;
    故选C.
    【点睛】
    本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:
    把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
    7、C
    【分析】
    根据轴对称图形和中心对称图形的定义求解即可.
    【详解】
    解:A.既是轴对称图形,又是中心对称图形,本选项不符合题意;
    B.既是轴对称图形,又是中心对称图形,本选项不符合题意;
    C.是中心对称图形,但不是轴对称图形,本选项符合题意;
    D.既是轴对称图形,又是中心对称图形,本选项不符合题意;
    故选:C.
    【点睛】
    此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形和中心对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
    8、A
    【分析】
    关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.
    【详解】
    解:点关于原点对称的点的坐标是:
    故选A
    【点睛】
    本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.
    9、B
    【分析】
    根据平行四边形的性质先求出∠B的度数,即可得到答案.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠B=180°-∠A=150°,
    ∴∠B:∠A=5:1,
    故选B.

    【点睛】
    本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补.
    10、B
    【分析】
    作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.
    【详解】
    解:如图,在线段AD上截取AM,使AM=AE,

    ∵AD=AB,
    ∴DM=BE,
    ∵点A关于直线DE的对称点为F,
    ∴△ADE≌△FDE,
    ∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,
    ∴∠DFG=90°,
    在Rt△DFG和Rt△DCG中,
    ∵,
    ∴Rt△DFG≌Rt△DCG(HL),
    ∴∠3=∠4,
    ∵∠ADC=90°,
    ∴∠1+∠2+∠3+∠4=90°,
    ∴2∠2+2∠3=90°,
    ∴∠2+∠3=45°,
    即∠EDG=45°,
    ∵EH⊥DE,
    ∴∠DEH=90°,△DEH是等腰直角三角形,
    ∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,
    ∴∠1=∠BEH,
    在△DME和△EBH中,
    ∵,
    ∴△DME≌△EBH(SAS),
    ∴EM=BH,
    Rt△AEM中,∠A=90°,AM=AE,
    ∴,
    ∴ ,即=.
    故选:B.
    【点睛】
    本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.
    二、填空题
    1、10
    【分析】
    根据正方形的性质,结合题意易求证,,,即可利用“ASA”证明,得出.最后根据勾股定理可求出,即正方形的面积为10.
    【详解】
    ∵四边形ABCD是正方形,
    ∴,,
    ∴.
    根据题意可知:,,
    ∴,,
    ∴在和中,,
    ∴,
    ∴.
    ∵在中,,
    ∴正方形ABCD的面积是10.
    故答案为:10.
    【点睛】
    本题考查正方形的性质,全等三角形的判定和性质以及勾股定理.利用数形结合的思想是解答本题的关键.
    2、× √
    【分析】
    根据菱形的性质,即可求解.
    【详解】
    解:(1)菱形的对角线互相垂直且平分;
    (2)菱形的对角线把菱形分成四个全等的直角三角形.
    故答案为:(1)×;(2)√
    【点睛】
    本题主要考查了菱形的性质,熟练掌握菱形的对角线互相垂直且平分是解题的关键.
    3、七
    【分析】
    根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可求解.
    【详解】
    解:设多边形的边数为n,则
    (n-2)•180°-2×360°=180°,
    解得n=7.
    故答案为:七.
    【点睛】
    本题考查了多边形的内角和公式与外角和定理,熟记公式与定理列出方程是解题的关键.
    4、
    【分析】
    过点E作EF⊥AD于点F,先证明CG=AG,再利用勾股定理列方程,求出AG的值,结合三角形的面积法和勾股定理,即可求解.
    【详解】
    解:如图所示:过点E作EF⊥AD于点F,


    有折叠的性质可知:∠ACB=∠ACE,
    ∵AD∥BC,
    ∴∠ACB=∠CAD,
    ∴∠CAD=∠ACE,
    ∴CG=AG,
    设CG=x,则DG=8-x,
    ∵在中,,
    ∴x=5,
    ∴AG=5,
    在中,EG=,EF⊥AD,∠AEG=90°,
    ∴,
    ∵在中,,、
    ∴DF=8-=,
    ∴在中,,
    故答案是:.
    【点睛】
    本题主要考查矩形的性质,折叠的性质,勾股定理,等腰三角形的判定定理,添加辅助线构造直角三角形,是解题的关键.
    5、
    【分析】
    由“AAS”可证△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可证△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性质和直角三角形的性质可求解.
    【详解】
    解:如图,连接PO,并延长交l2于点H,

    ∵l1⊥l3,l2⊥l3,
    ∴l1∥l3,∠APC=∠BQC=∠ACB=90°,
    ∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,
    ∴∠PAC=∠BCQ,
    在△ACP和△CBQ中,

    ∴△ACP≌△CBQ(AAS),
    ∴AP=CQ,PC=BQ,
    ∴PC+CQ=AP+BQ=PQ=,
    ∵AP∥BQ,
    ∴∠OAP=∠OBH,
    ∵点O是斜边AB的中点,
    ∴AO=BO,
    在△APO和△BHO中,

    ∴△APO≌△BHO(AAS),
    ∴AP=BH,OP=OH,
    ∴BH+BQ=AP+BQ=PQ,
    ∴PQ=QH=,
    ∵∠PQH=90°,
    ∴PH=PQ=12,
    ∵OP=OH,∠PQH=90°,
    ∴OQ=PH=6.
    故答案为:6
    【点睛】
    本题主要考查了全等三角形的判定和性质,等腰三角形和直角三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形和直角三角形的性质定理是解题的关键.
    三、解答题
    1、(1)四边形是菱形,证明见解析;(2)
    【分析】
    (1)先证明四边形是平行四边形,再利用直角三角形斜边上的中线等于斜边的一半,证明从而可得结论;
    (2)先求解 再求解的面积,再利用菱形的性质可得菱形的面积.
    【详解】
    证明:(1)四边形是菱形,理由如下:

    四边形是平行四边形,
    ∠ACB=90°,D为AB中点,

    四边形是菱形.
    (2) ∠ABC=30°,AB=4,∠ACB=90°,


    D为AB中点,

    四边形是菱形,

    故答案为:
    【点睛】
    本题考查的是平行四边形的判定,菱形的判定与性质,直角三角形斜边上的中线的性质,含的直角三角形的性质,勾股定理的应用,掌握“有一组邻边相等的平行四边形是菱形”是解本题的关键.
    2、规律为:多边形的边数减去2,就是多边形中的三角形的个数; 2条,3条,9条,条;条;(1)6;(2)105;(3)
    【分析】
    通过观察多边形边数与其分割的三角形个数,即可发现规律
    利用规律,多边形的边数一个顶点出发的对角线数,直接填写表格即可
    先求出所有顶点得到的对角线之和,最后除以2即可得到边形的对角线条数
    (1)根据题意,四边形一个顶点可以得到一条,四个点共4条,再去除一半,加上四个点单独连接的4条线段,即可得到答案.
    (2)根据规律可以发现:十五边形的每个点可以得到12条,15点有180条,去掉一半,加上15个点组成的十五边形的的15条边,即可得到答案.
    (3)通过上述两小题,即可以找到对应的规律,利用规律进行求解即可.
    【详解】
    由图可以直接发现:多边形的边数与其分割的三角形个数相差2,故规律为:多边形的边数减去2,就是多边形中的三角形的个数.
    利用上图规律,便可以知道从五边形的一个顶点出发,得到2条对角线;六边形的一个顶点出发,得到3条对角线;十二边形的一个顶点出发,得到9条对角线;边形的一个顶点出发,得到条对角线.
    边形的一个顶点可以得到条对角线,故个顶点共有,由于每条对角线重复连接了一次,故n边形共有条对角线
    (1)解:有四个点可以组成四边形,每个点可以得到1条对角线,四个点共4条,
    每条对角线重复连接了一次,
    对角线条数为2,
    四边形的边数为4,
    一共可以连接2+4=6条线段.
    (2)解:有15个点可以组成十五边形,每个点可以得到12条对角线,四个点共180条,
    每条对角线重复连接了一次,
    对角线条数为90,
    四边形的边数为15,
    一共可以连接90+15=105条线段.
    (3)解:由前面题的规律可知:有个点可以组成边形,每个点可以得到条对角线,四个点共条,
    每条对角线重复连接了一次,
    对角线条数为,
    四边形的边数为,
    一共可以连接条线段.
    【点睛】
    本题主要是考察了图形类的规律问题以及列代数式,根据题意,找到对角线与多边形的边数关系是解决本题的关键,另外,注意本题是问的点与点之间可连接的线段数,不要只算对角线的条数.
    3、(1)PD=PC,PD⊥PC;(2)成立,见解析;(3)2或4
    【分析】
    (1)根据直角三角形斜边中线的性质,可得,根据角之间的关系即可,即可求解;
    (2)过点P作PT⊥AB交BC的延长线于T,交AC于点O,根据全等三角形的判定与性质求解即可;
    (3)分两种情况,当点E在BC的上方时和当点E在BC的下方时,过点P作PQ⊥BC于Q,利用等腰直角三角形的性质求得,即可求解.
    【详解】
    解:(1)∵∠ACB=90°,AC=BC,
    ∴,
    ∵,
    ∴,
    ∵点P为AE的中点,
    ∴,
    ∴,,
    ∴,

    故答案为:,.
    (2)结论成立.理由如下:
    过点P作PT⊥AB交BC的延长线于T,交AC于点O.


    ∴,
    ∴,,
    由勾股定理可得:



    ∵点P为AE的中点,


    在中,,
    ∴,


    ∴,

    ∴,
    ∴.
    (3)如图3﹣1中,当点E在BC的上方时,过点P作PQ⊥BC于Q.

    则,



    由(2)可得,,,∴为等腰直角三角形


    由勾股定理得,

    如图3﹣2中,当点E在BC的下方时,同法可得PC=PD=2.
    综上所述,PC的长为4或2.
    【点睛】
    此题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练掌握相关基本性质,做辅助线,构造出全等三角形.
    4、(1)见祥解;(2)AB=DC=DE=DF=CF,证明见详解.
    【分析】
    (1)根据四边形ABCD是平行四边形,得出AB∥CD即(AB∥ED),AB=CD,根据,可证四边形ABDE为平行四边形,得出AB=DE即可;
    (2)根据EF⊥BF,CD=ED,根据直角三角形斜边中线可得DF=CD=ED,再证△DCF为等边三角形即可.
    【详解】
    证明:(1)∵四边形ABCD是平行四边形,
    ∴AB∥CD即(AB∥ED),AB=CD,
    ∵,
    ∴四边形ABDE为平行四边形,
    ∴AB=DE,
    ∴CD=ED,
    ∴点D为CE中点;
    (2)结论为:AB=DC=DE=DF=CF,
    ∵EF⊥BF,CD=ED,
    ∴DF=CD=ED,
    ∵AB∥CD,∠ABC=60°,
    ∴∠DCF=∠ABC=60°,
    ∴△DCF为等边三角形,
    ∴CF=CD=DF=AB=ED.
    【点睛】
    本题考查平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质,掌握平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质是解题关键.
    5、(1)四边形CODP是菱形,理由见解析;(2)四边形CODP是矩形,理由见解析;(3)四边形CODP是正方形,理由见解析
    【分析】
    (1)先证明四边形CODP是平行四边形,再由矩形的性质可得OD=OC,即可证明平行四边形OCDP是菱形;
    (2)先证明四边形CODP是平行四边形,再由菱形的性质可得∠DOC=90°,即可证明平行四边形OCDP是矩形;
    (3)先证明四边形CODP是平行四边形,再由正方形的性质可得BD⊥AC,DO=OC,即可证明平行四边形OCDP是正方形;
    【详解】
    解:(1)四边形CODP是菱形,理由如下:
    ∵DP∥OC,且DP=OC,
    ∴四边形CODP是平行四边形,
    又∵四边形ABCD是矩形,
    ∴OD=OC,
    ∴平行四边形OCDP是菱形;
    (2)四边形CODP是矩形,理由如下:
    ∵DP∥OC,且DP=OC,
    ∴四边形CODP是平行四边形,
    又∵四边形ABCD是菱形,
    ∴BD⊥AC,
    ∴∠DOC=90°,
    ∴平行四边形OCDP是矩形;
    (3)四边形CODP是正方形,理由如下:
    ∵DP∥OC,且DP=OC,
    ∴四边形CODP是平行四边形,
    又∵四边形ABCD是正方形,
    ∴BD⊥AC,DO=OC,
    ∴∠DOC=90°,平行四边形CODP是菱形,
    ∴菱形OCDP是正方形.
    【点睛】
    本题主要考查了矩形的性质与判定,菱形的性质与判定,正方形的性质与判定,解题的关键在于能够熟练掌握特殊平行四边形的性质与判定条件.

    相关试卷

    2021学年第十五章 四边形综合与测试随堂练习题: 这是一份2021学年第十五章 四边形综合与测试随堂练习题,共24页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课时训练: 这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时训练,共30页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试巩固练习: 这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试巩固练习,共27页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map