|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年最新京改版八年级数学下册第十五章四边形章节测评试卷(精选)
    立即下载
    加入资料篮
    2022年最新京改版八年级数学下册第十五章四边形章节测评试卷(精选)01
    2022年最新京改版八年级数学下册第十五章四边形章节测评试卷(精选)02
    2022年最新京改版八年级数学下册第十五章四边形章节测评试卷(精选)03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第十五章 四边形综合与测试达标测试

    展开
    这是一份初中数学第十五章 四边形综合与测试达标测试,共26页。

    京改版八年级数学下册第十五章四边形章节测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列图形中不是中心对称图形的是( )
    A. B. C. D.
    2、下列图形中,可以看作是中心对称图形的是( )
    A. B. C. D.
    3、垦区小城镇建设如火如荼,小红家买了新楼.爸爸在正三角形、正方形、正五边形、正六边形四种瓷砖中,只购买一种瓷砖进行平铺,有几种购买方式( )
    A.1种 B.2种 C.3种 D.4种
    4、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是( )
    A. B.
    C. D.
    5、如图,已知在正方形ABCD中,厘米,,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在a与t的值,使与全等时,则t的值为( )

    A.2 B.2或1.5 C.2.5 D.2.5或2
    6、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形.该小正方形的序号是(  )

    A. B. C. D.
    7、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB=9,AD,则四边形CDFE的面积是(  )

    A. B. C. D.54
    8、下列图案中,是中心对称图形,但不是轴对称图形的是( )
    A. B.
    C. D.
    9、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为(  )

    A. B. C.4.5 D.4.3
    10、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )
    A.三角形 B.四边形 C.五边形 D.六边形
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知一个多边形的内角和与外角和的比是2:1,则它的边数为 _____.
    2、判断:
    (1)菱形的对角线互相垂直且相等(________)
    (2)菱形的对角线把菱形分成四个全等的直角三角形(________)
    3、如图,将长方形ABCD按图中方式折叠,其中EF、EC为折痕,折叠后、、E在一直线上,已知∠BEC=65°,那么∠AEF的度数是_____.

    4、正五边形的一个内角与一个外角的比______.
    5、在平面直角坐标系中,与点关于原点对称的点的坐标是________.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,四边形ABCD是平行四边形,∠BAC=90°.
    (1)尺规作图:在BC上截取CE,使CE=CD,连接DE与AC交于点F,过点F作线段AD的垂线交AD于点M;(不写作法,保留作图痕迹)
    (2)在(1)的条件下,猜想线段FM和CF的数量关系,并证明你的结论.

    2、(1)如图1,在△ABC中,BE平分∠ABC,CE平分∠ACD,试说明:∠E∠A;

    (拓展应用)
    (2)如图2,在四边形ABDC中,对角线AD平分∠BAC.
    ①若∠ACD=130°,∠BCD=50°,∠CBA=40°,求∠CDA的度数;
    ②若∠ABD+∠CBD=180°,∠ACB=82°,写出∠CBD与∠CAD之间的数量关系.
    3、(1)如图1,∠ADC=120°,∠BCD=140°,∠DAB和∠CBE的平分线交于点,则∠AFB的度数是 ;
    (2)如图2,若∠ADC=,∠BCD=,且,∠DAB和∠CBE的平分线交于点,则∠AFB=   (用含,的代数式表示);
    (3)如图3,∠ADC=,∠BCD=,当∠DAB和∠CBE的平分线AG,BH平行时,,应该满足怎样的数量关系?请说明理由;

    (4)如果将(2)中的条件改为,再分别作∠DAB和∠CBE的平分线,∠AFB与,满足怎样的数量关系?请画出图形并直接写出结论.
    4、如图,在平行四边形中,,..点在上由点向点出发,速度为每秒;点在边上,同时由点向点运动,速度为每秒.当点运动到点时,点,同时停止运动.连接,设运动时间为秒.

    (1)当为何值时,四边形为平行四边形?
    (2)设四边形的面积为,求与之间的函数关系式.
    (3)当为何值时,四边形的面积是四边形的面积的四分之三?求出此时的度数.
    (4)连接,是否存在某一时刻,使为等腰三角形?若存在,请求出此刻的值;若不存在,请说明理由.
    5、(教材重现)如图是数学教材第135页的部分截图.
    在多边形中,三角形是最基本的图形.如图4.4.5所示,每一个多边形都可以分割成若干个三角形.

    数一数每个多边形中三角形的个数,你能发现什么规律?
    在多边形中,连接不相邻的两个顶点,所得到的线段称为多边形的对角线.
    (问题思考)结合如图思考,从多边形的一个顶点出发,可以得到的对角线的数量,并填写表:
    多边形边数



    ……
    十二
    ……
    n
    从一个顶点出发,得到对角线的数量
    1条
       
       
    ……
       
    ……
       
    (问题探究)n边形有n个顶点,每个顶点分别连接对角线后,每条对角线重复连接了一次,由此可推导出,n边形共有    对角线(用含有n的代数式表示).
    (问题拓展)
    (1)已知平面上4个点,任意三点不在同一直线上,一共可以连接    条线段.
    (2)已知平面上共有15个点,任意三点不在同一直线上,一共可以连接    条线段.
    (3)已知平面上共有x个点,任意三点不在同一直线上,一共可以连接    条线段(用含有x的代数式表示,不必化简).

    -参考答案-
    一、单选题
    1、B
    【分析】
    根据中心对称图形的概念求解.
    【详解】
    解:A、是中心对称图形,故本选项不合题意;
    B、不是中心对称图形,故本选项符合题意;
    C、是中心对称图形,故本选项不合题意;
    D、是中心对称图形,故本选项不合题意.
    故选:B.
    【点睛】
    本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
    2、A
    【分析】
    根据中心对称图形的概念(在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,则为中心对称图形)求解即可.
    【详解】
    解:B、C、D三个选项的图形旋转后,均不能与原来的图形重合,不符合题意,
    A选项是中心对称图形.故本选项正确.
    故选:A.
    【点睛】
    本题考查了中心对称图形的概念,深刻理解中心对称图形的概念是解题关键.
    3、C
    【分析】
    从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.
    【详解】
    解:正三角形每个内角是60°,能被360°整除,所以能单独镶嵌成一个平面;
    正方形每个内角是90°,能被360°整除,所以能单独镶嵌成一个平面;
    正五边形每个内角是108°,不能被360°整除,所以不能单独镶嵌成一个平面;
    正六边形每个内角是120°,能被360°整除,所以能单独镶嵌成一个平面.
    故只购买一种瓷砖进行平铺,有3种方式.
    故选:C.
    【点睛】
    本题主要考查了平面镶嵌.解这类题,根据组成平面镶嵌的条件,逐个排除求解.
    4、C
    【分析】
    根据中心对称图形的定义进行逐一判断即可.
    【详解】
    解:A、不是中心对称图形,故此选项不符合题意;
    B、不是中心对称图形,故此选项不符合题意;
    C、是中心对称图形,故此选项符合题意;
    D、不是中心对称图形,故此选项不符合题意;
    故选C.
    【点睛】
    本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
    5、D
    【分析】
    根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.
    【详解】
    解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,BE=CP,
    ∵AB=BC=10厘米,AE=4厘米,
    ∴BE=CP=6厘米,
    ∴BP=10-6=4厘米,
    ∴运动时间t=4÷2=2(秒);
    当,即点Q的运动速度与点P的运动速度不相等,
    ∴BP≠CQ,
    ∵∠B=∠C=90°,
    ∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.
    ∴点P,Q运动的时间t=(秒).
    综上t的值为2.5或2.
    故选:D.
    【点睛】
    本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.
    6、B
    【分析】
    利用中心对称图形的定义判断即可.
    【详解】
    解:根据中心对称图形的定义可知,②满足条件.
    故选:.
    【点睛】
    本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键.
    7、C
    【分析】
    过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案.
    【详解】

    如图,过点F作,分别交于M、N,
    ∵四边形ABCD是矩形,
    ∴,,
    ∵点E是BC的中点,
    ∴,
    ∵F是AE中点,
    ∴,
    ∴.
    故选:C.
    【点睛】
    本题考查矩形的性质与三角形的面积公式,掌握是解题的关键.
    8、C
    【分析】
    根据轴对称图形和中心对称图形的定义求解即可.
    【详解】
    解:A.既是轴对称图形,又是中心对称图形,本选项不符合题意;
    B.既是轴对称图形,又是中心对称图形,本选项不符合题意;
    C.是中心对称图形,但不是轴对称图形,本选项符合题意;
    D.既是轴对称图形,又是中心对称图形,本选项不符合题意;
    故选:C.
    【点睛】
    此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形和中心对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
    9、A
    【分析】
    根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH=DE,利用勾股定理求出DE的长即可得出答案.
    【详解】
    解:∵四边形ABCD为正方形,
    ∴∠B=∠DCF=90°,BC=DC,
    在△CBE和△DCF中,

    ∴△CBE≌△DCF(SAS),
    ∴∠BCE=∠CDF,
    ∵∠BCE+∠DCH=90°,
    ∴∠CDF+∠DCH=90°,
    ∴∠DHC=∠DHE=90°,
    ∵点G为DE的中点,
    ∴GH=DE,
    ∵AD=AB=6,AE=AB﹣BE=6﹣2=4,
    ∴,
    ∴GH=.
    故选A.
    【点睛】
    本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.
    10、A
    【分析】
    多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.
    【详解】
    解:多边形的外角和是360度,
    又多边形的外角和是内角和的2倍,
    多边形的内角和是180度,
    这个多边形是三角形.
    故选:A.
    【点睛】
    考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.
    二、填空题
    1、6
    【分析】
    根据多边形内角和公式及多边形外角和可直接进行求解.
    【详解】
    解:由题意得:,
    解得:,
    ∴该多边形的边数为6;
    故答案为6.
    【点睛】
    本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和及外角和是解题的关键.
    2、× √
    【分析】
    根据菱形的性质,即可求解.
    【详解】
    解:(1)菱形的对角线互相垂直且平分;
    (2)菱形的对角线把菱形分成四个全等的直角三角形.
    故答案为:(1)×;(2)√
    【点睛】
    本题主要考查了菱形的性质,熟练掌握菱形的对角线互相垂直且平分是解题的关键.
    3、25°
    【分析】
    利用翻折变换的性质即可解决.
    【详解】
    解:由折叠可知,∠EF=∠AEF,∠EC=∠BEC=65°,
    ∵∠EF+∠AEF+∠EC+∠BEC=180°,
    ∴∠EF+∠AEF=50°,
    ∴∠AEF=25°,
    故答案为:25°.
    【点睛】
    本题考查了折叠的性质,熟练掌握折叠的性质是解题的关键.
    4、
    【分析】
    根据公式分别求出一个内角与一个外角的度数,即可得到答案.
    【详解】
    解:正五边形的一个内角的度数为,正五边形的一个外角的度数为,
    ∴正五边形的一个内角与一个外角的比为,
    故答案为:.
    【点睛】
    此题考查了正五边形的内角度数及外角度数,熟记多边形的内角和与外角和公式是解题的关键.
    5、(-3,-1)
    【分析】
    由题意直接根据两个点关于原点对称时,它们的坐标符号相反进行分析即可得出答案.
    【详解】
    解:在平面直角坐标系中,与点关于原点对称的点的坐标是(-3,-1).
    故答案为:(-3,-1).
    【点睛】
    本题考查的是关于原点的对称的点的坐标,注意掌握平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.
    三、解答题
    1、(1)图形见解析;(2),证明见解析
    【分析】
    (1)以C为圆心CD长为半径画弧于BC交点即为E;连DE与AC交点即为F;过F作AD的垂直平分线与AD交点即为M;
    (2)证明DF平分,再利用角平分线的性质判定即可.
    【详解】
    (1)图形如下:

    (2),证明如下:
    由(1)可得:,CE=CD

    ∵四边形ABCD是平行四边形
    ∴AD∥BC,AB∥CD
    ∴,

    即DF平分
    ∵∠BAC=90°


    【点睛】
    本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定与性质.
    2、(1)见解析;(2)①∠CDA=20°;②∠CAD+41°=∠CBD.
    【分析】
    (1)由三角形外角的性质可得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的性质可得,,利用等量代换,即可求得∠A与∠E的关系;
    (2)①根据三角形的内角和定理和角平分线的定义即可解答;②设∠CBD=a,根据已知条件得到∠ABC=180°-2a,根据三角形的内角和定理和角平分线的定义即可解答.
    【详解】
    (1)证明:∵∠ACD是△ABC的外角
    ∴∠ACD=∠A+∠ABC
    ∵CE平分∠ACD

    又∵∠ECD=∠E+∠EBC

    ∵BE平分∠ABC


    ∴;
    (2)①∵∠ACD=130°,∠BCD=50°
    ∴∠ACB=∠ACD﹣∠BCD=130°﹣50°=80°
    ∵∠CBA=40°
    ∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣80°﹣40°=60°
    ∵AD平分∠BAC

    ∴∠CDA=180°﹣∠CAD﹣∠ACD=20°;
    ②∠CAD+41°=∠CBD
    设∠CBD=α
    ∵∠ABD+∠CBD=180°
    ∴∠ABC=180°﹣2α
    ∵∠ACB=82°
    ∴∠CAB=180°﹣∠ABC﹣∠ACB=180°﹣(180°﹣2α)﹣82°=2α﹣82°
    ∵AD平分∠BAC
    ∴∠CAD=∠CAB=α﹣41°
    ∴∠CAD+41°=∠CBD.
    【点睛】
    本题主要考查了多边形的内角与外角、三角形内角和定理、角平分线等知识点,掌握三角形内角和是180°是解答本题的关键.
    3、(1)40°;(2);(3)若AG∥BH,则α+β=180°,理由见解析;(4),图见解析.
    【分析】
    (1)利用四边形内角和定理得到∠DAB+∠ABC=360°-120°-140°=100°.再利用三角形的外角性质得到∠F=∠FBE-∠FAB,通过计算即可求解;
    (2)同(1),通过计算即可求解;
    (3)由AG∥BH,推出∠GAB=∠HBE.再推出AD∥BC,再利用平行线的性质即可得到答案;
    (4)利用四边形内角和定理得到∠DAB+∠ABC=360°-∠D-BCD=360°-α-β.再利用三角形的外角性质得到∠F=∠MAB-∠ABF,通过计算即可求解.
    【详解】
    解:(1)∵BF平分∠CBE,AF平分∠DAB,
    ∴∠FBE=∠CBE,∠FAB=∠DAB.
    ∵∠D+∠DCB+∠DAB+∠ABC=360°,
    ∴∠DAB+∠ABC=360°-∠D-∠DCB
    =360°-120°-140°=100°.
    又∵∠F+∠FAB=∠FBE,
    ∴∠F=∠FBE-∠FAB=∠CBE−∠DAB
    = (∠CBE−∠DAB)
    = (180°−∠ABC−∠DAB)
    =×(180°−100°)
    =40°.
    故答案为:40°;
    (2)由(1)得:∠AFB= (180°−∠ABC−∠DAB),
    ∠DAB+∠ABC=360°-∠D-∠DCB.
    ∴∠AFB= (180°−360°+∠D+∠DCB)
    =∠D+∠DCB−90°
    =α+β−90°.
    故答案为:;
    (3)若AG∥BH,则α+β=180°.理由如下:
    若AG∥BH,则∠GAB=∠HBE.
    ∵AG平分∠DAB,BH平分∠CBE,
    ∴∠DAB=2∠GAB,∠CBE=2∠HBE,
    ∴∠DAB=∠CBE,
    ∴AD∥BC,
    ∴∠DAB+∠DCB=α+β=180°;
    (4)如图:

    ∵AM平分∠DAB,BN平分∠CBE,
    ∴∠BAM=∠DAB,∠NBE=∠CBE,
    ∵∠D+∠DAB+∠ABC+∠BCD=360°,
    ∴∠DAB+∠ABC=360°-∠D-BCD=360°-α-β,
    ∴∠DAB+180°-∠CBE=360°-α-β,
    ∴∠DAB-∠CBE=180°-α-β,
    ∵∠ABF与∠NBE是对顶角,
    ∴∠ABF=∠NBE,
    又∵∠F+∠ABF=∠MAB,
    ∴∠F=∠MAB-∠ABF,
    ∴∠F=∠DAB−∠NBE
    =∠DAB−∠CBE
    = (∠DAB−∠CBE)
    = (180°−α−β)
    =90°-α−β.
    【点睛】
    本题主要考查了三角形的外角性质、四边形内角和定理、平行线的性质、角平分线的定义.借助转化的数学思想,将未知条件转化为已知条件解题.
    4、(1);(2)y=S四边形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)当t=4或 或时,为等腰三角形,理由见解析.
    【分析】
    (1)利用平行四边形的对边相等AQ=BP建立方程求解即可;
    (2)先构造直角三角形,求出AE,再用梯形的面积公式即可得出结论;
    (3)利用面积关系求出t,即可求出DQ,进而判断出DQ=PQ,即可得出结论;
    (4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.
    【详解】
    解:(1)∵在平行四边形中,,,
    由运动知,AQ=16−t,BP=2t,
    ∵四边形ABPQ为平行四边形,
    ∴AQ=BP,
    ∴16−t=2t
    ∴t=,
    即:t=s时,四边形ABPQ是平行四边形;
    (2)过点A作AE⊥BC于E,如图,

    在Rt△ABE中,∠B=30°,AB=8,
    ∴AE=4,
    由运动知,BP=2t,DQ=t,
    ∵四边形ABCD是平行四边形,
    ∴AD=BC=16,
    ∴AQ=16−t,
    ∴y=S四边形ABPQ=(BP+AQ)•AE=(2t+16−t)×4=2t+32(0<t≤8);
    (3)由(2)知,AE=4,
    ∵BC=16,
    ∴S四边形ABCD=16×4=64,
    由(2)知,y=S四边形ABPQ=2t+32(0<t≤8),
    ∵四边形ABPQ的面积是四边形ABCD的面积的四分之三
    ∴2t+32=×64,
    ∴t=8;
    如图,


    当t=8时,点P和点C重合,DQ=8,
    ∵CD=AB=8,
    ∴DP=DQ,
    ∴∠DQC=∠DPQ,
    ∴∠D=∠B=30°,
    ∴∠DQP=75°;
    (4)①当AB=BP时,BP=8,
    即2t=8,t=4;
    ②当AP=BP时,如图,

    ∵∠B=30°,
    过P作PM垂直于AB,垂足为点M,
    ∴BM=4,,
    解得:BP=,
    ∴2t=,
    ∴t=
    ③当AB=AP时,同(2)的方法得,BP=,
    ∴2t=,
    ∴t=
    所以,当t=4或 或时,△ABP为等腰三角形.
    【点睛】
    此题是四边形综合题,主要考查了平行四边形的性质,含30°的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQ=BP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题.
    5、规律为:多边形的边数减去2,就是多边形中的三角形的个数; 2条,3条,9条,条;条;(1)6;(2)105;(3)
    【分析】
    通过观察多边形边数与其分割的三角形个数,即可发现规律
    利用规律,多边形的边数一个顶点出发的对角线数,直接填写表格即可
    先求出所有顶点得到的对角线之和,最后除以2即可得到边形的对角线条数
    (1)根据题意,四边形一个顶点可以得到一条,四个点共4条,再去除一半,加上四个点单独连接的4条线段,即可得到答案.
    (2)根据规律可以发现:十五边形的每个点可以得到12条,15点有180条,去掉一半,加上15个点组成的十五边形的的15条边,即可得到答案.
    (3)通过上述两小题,即可以找到对应的规律,利用规律进行求解即可.
    【详解】
    由图可以直接发现:多边形的边数与其分割的三角形个数相差2,故规律为:多边形的边数减去2,就是多边形中的三角形的个数.
    利用上图规律,便可以知道从五边形的一个顶点出发,得到2条对角线;六边形的一个顶点出发,得到3条对角线;十二边形的一个顶点出发,得到9条对角线;边形的一个顶点出发,得到条对角线.
    边形的一个顶点可以得到条对角线,故个顶点共有,由于每条对角线重复连接了一次,故n边形共有条对角线
    (1)解:有四个点可以组成四边形,每个点可以得到1条对角线,四个点共4条,
    每条对角线重复连接了一次,
    对角线条数为2,
    四边形的边数为4,
    一共可以连接2+4=6条线段.
    (2)解:有15个点可以组成十五边形,每个点可以得到12条对角线,四个点共180条,
    每条对角线重复连接了一次,
    对角线条数为90,
    四边形的边数为15,
    一共可以连接90+15=105条线段.
    (3)解:由前面题的规律可知:有个点可以组成边形,每个点可以得到条对角线,四个点共条,
    每条对角线重复连接了一次,
    对角线条数为,
    四边形的边数为,
    一共可以连接条线段.
    【点睛】
    本题主要是考察了图形类的规律问题以及列代数式,根据题意,找到对角线与多边形的边数关系是解决本题的关键,另外,注意本题是问的点与点之间可连接的线段数,不要只算对角线的条数.

    相关试卷

    初中数学北京课改版八年级下册第十五章 四边形综合与测试同步测试题: 这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步测试题,共27页。试卷主要包含了下列命题是真命题的是,下列图案中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试复习练习题: 这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试复习练习题,共23页。试卷主要包含了如图,在六边形中,若,则等内容,欢迎下载使用。

    2021学年第十五章 四边形综合与测试巩固练习: 这是一份2021学年第十五章 四边形综合与测试巩固练习,共21页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map