年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练京改版八年级数学下册第十五章四边形必考点解析试卷(名师精选)

    立即下载
    加入资料篮
    2022年最新强化训练京改版八年级数学下册第十五章四边形必考点解析试卷(名师精选)第1页
    2022年最新强化训练京改版八年级数学下册第十五章四边形必考点解析试卷(名师精选)第2页
    2022年最新强化训练京改版八年级数学下册第十五章四边形必考点解析试卷(名师精选)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题,共29页。
    京改版八年级数学下册第十五章四边形必考点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在中,,,AD平分,E是AD中点,若,则CE的长为( )

    A. B. C. D.
    2、下列说法中正确的是( )
    A.从一个八边形的某个顶点出发共有8条对角线
    B.已知C、D为线段AB上两点,若,则
    C.“道路尽可能修直一点”,这是因为“两点确定一条直线”
    D.用两个钉子把木条固定在墙上,用数学的知识解释是“两点之间线段最短”
    3、下列图案中,是中心对称图形的是( )
    A. B. C. D.
    4、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )
    A.任意四边形 B.平行四边形 C.对角线相等的四边形 D.对角线垂直的四边形
    5、如图,菱形中,,.以为圆心,长为半径画,点为菱形内一点,连,,.若,且,则图中阴影部分的面积为( )

    A. B. C. D.
    6、在平面直角坐标系中,点关于原点对称的点的坐标是( )
    A. B. C. D.
    7、如图,已知在正方形ABCD中,厘米,,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在a与t的值,使与全等时,则t的值为( )

    A.2 B.2或1.5 C.2.5 D.2.5或2
    8、如图,小明从点A出发沿直线前进10m到达点B,向左转,后又沿直线前进10m到达点C,再向左转30°后沿直线前进10m到达点...照这样走下去,小明第一次回到出发点A,一共走了( )米.

    A.80 B.100 C.120 D.140
    9、下列四个图形中,为中心对称图形的是(  )
    A. B.
    C. D.
    10、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是(  )
    A.菱形 B.矩形 C.正方形 D.三角形
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④点E运动的路程是2,其中正确结论的序号为 _____.


    2、如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为________.

    3、点P(1,2)关于原点中心对称的点的坐标为_______.
    4、如图,已知ABCD,和的平分线相交于,,求的度数_____.

    5、一个多边形的内角和比它的外角和的2倍还多180°,则它是________边形.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E,CD=5,DB=13,求BE的长.


    2、问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:

    ①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
    ②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
    然后运用类似的思想提出了如下命题:
    ③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.
    任务要求:
    (1)请你从①②③三个命题中选择一个进行证明;
    (2)请你继续完成下面的探索;
    ①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);
    ②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.
    3、如图,在正方形ABCD中,DF=AE,AE与DF相交于点O.
    (1)求证:△DAF≌△ABE;
    (2)求∠AOD的度数.

    4、已知:在中,点、点、点分别是、、的中点,连接、.
    (1)如图1,若,求证:四边形为菱形;
    (2)如图2,过作交延长线于点,连接,,在不添加任何辅助线的情况下,请直接写出图中所有与面积相等的平行四边形.


    5、如图,在中,过点作于点,点在边上,,连接,.

    (1)求证:四边形是矩形;
    (2)若,,,求证:平分.

    -参考答案-
    一、单选题
    1、B
    【分析】
    根据三角形内角和定理求出∠BAC,根据角平分线的定义∠DAB=∠B,求出AD,根据直角三角形的性质解答即可.
    【详解】
    解:∵∠ACB=90°,∠B=30°,
    ∴∠BAC=90°-30°=60°,
    ∵AD平分∠BAC,
    ∴∠DAB=∠BAC=30°,
    ∴∠DAB=∠B,
    ∴AD=BD=a,
    在Rt△ACB中,E是AD中点,
    ∴CE=AD=,
    故选: B.
    【点睛】
    本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键.
    2、B
    【分析】
    根据n边形的某个顶点出发共有(n-3)条对角线即可判断A;根据线段的和差即可判断B;根据两点之间,线段最短即可判断C;根据两点确定一条直线即可判断D.
    【详解】
    解:A、从一个八边形的某个顶点出发共有5条对角线,说法错误,不符合题意;
    B、已知C、D为线段AB上两点,若AC=BD,则AD=BC,说法正确,符合题意;

    C、“道路尽可能修直一点”,这是因为“两点之间,线段最短”,说法错误,不符合题意;
    D、用两个钉子把木条固定在墙上,用数学的知识解释是“两点确定一条直线”,说法错误,不符合题意;
    故选B.
    【点睛】
    本题主要考查了多边形对角线问题,线段的和差,两点之间,线段最短,两点确定一条直线等等,熟知相关知识是解题的关键.
    3、B
    【分析】
    由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可.
    【详解】
    解:A、C、D都是轴对称图形,只有B选项是中心对称图形.
    故选:B.
    【点睛】
    本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    4、B
    【分析】
    根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状.
    【详解】
    解:,



    ∴a=b,c=d,
    ∵四边形四条边长分别是a,b,c,d,其中a,b为对边,
    ∴c、d是对边,
    ∴该四边形是平行四边形,
    故选:B.
    【点睛】
    此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键.
    5、C
    【分析】
    过点P作交于点M,由菱形得,,由,得,,故可得,,根据SAS证明,求出,即可求出.
    【详解】

    如图,过点P作交于点M,
    ∵四边形ABCD是菱形,
    ∴,,
    ∵,,
    ∴,,
    ∴,,
    在与中,

    ∴,
    ∴,
    在中,,
    ∴,
    ,即,
    解得:,
    ∴.
    故选:C.
    【点睛】
    此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.
    6、A
    【分析】
    关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.
    【详解】
    解:点关于原点对称的点的坐标是:
    故选A
    【点睛】
    本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.
    7、D
    【分析】
    根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.
    【详解】
    解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,BE=CP,
    ∵AB=BC=10厘米,AE=4厘米,
    ∴BE=CP=6厘米,
    ∴BP=10-6=4厘米,
    ∴运动时间t=4÷2=2(秒);
    当,即点Q的运动速度与点P的运动速度不相等,
    ∴BP≠CQ,
    ∵∠B=∠C=90°,
    ∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.
    ∴点P,Q运动的时间t=(秒).
    综上t的值为2.5或2.
    故选:D.
    【点睛】
    本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.
    8、C
    【分析】
    由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案.
    【详解】
    解:由 可得:小明第一次回到出发点A,
    一个要走米,
    故选C
    【点睛】
    本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为得到一共要走12个10米”是解本题的关键.
    9、B
    【分析】
    把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
    【详解】
    解:选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;
    选项A、C、D不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;
    故选:B.
    【点睛】
    此题主要考查了中心对称图形定义,关键是找出对称中心.
    10、B
    【分析】
    先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.
    【详解】
    解:如图,∵、、、分别是、、、的中点,
    ∴,,,
    ∴四边形是平行四边形,
    ∵,
    ∴,
    ∴平行四边形是矩形,
    又与不一定相等,
    与不一定相等,
    矩形不一定是正方形,
    故选:B.

    【点睛】
    本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.
    二、填空题
    1、①②③④
    【分析】
    ①根据∠DAC=60°,OD=OA,得出△OAD为等边三角形,再由△DFE为等边三角形,得∠DOA=∠DEF=60°,再利用角的等量代换,即可得出结论①正确;
    ②连接OE,利用SAS证明△DAF≌△DOE,再证明△ODE≌△OCE,即可得出结论②正确;
    ③通过等量代换即可得出结论③正确;
    ④延长OE至,使=OD,连接,通过△DAF≌△DOE,∠DOE=60°,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段运动到,从而得出结论④正确;
    【详解】
    解:①设与的交点为如图所示:

    ∵∠DAC=60°,OD=OA,
    ∴△OAD为等边三角形,
    ∴∠DOA=∠DAO=∠ADO =60°,
    ∵△DFE为等边三角形,
    ∴∠DEF=60°,
    ∴∠DOA=∠DEF=60°,
    ∴,

    故结论①正确;
    ②如图,连接OE,

    在△DAF和△DOE中,

    ∴△DAF≌△DOE(SAS),
    ∴∠DOE=∠DAF=60°,
    ∵∠COD=180°﹣∠AOD=120°,
    ∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,
    ∴∠COE=∠DOE,
    在△ODE和△OCE中,

    ∴△ODE≌△OCE(SAS),
    ∴ED=EC,∠OCE=∠ODE,
    故结论②正确;
    ③∵∠ODE=∠ADF,
    ∴∠ADF=∠OCE,即∠ADF=∠ECF,
    故结论③正确;
    ④如图,延长OE至,使=OD,连接,


    ∵△DAF≌△DOE,∠DOE=60°,
    ∴点F在线段AO上从点A至点O运动时,点E从点O沿线段运动到,


    设,则
    ∴在中,

    解得:
    ∴=OD=AD=,
    ∴点E运动的路程是,
    故结论④正确;
    故答案为:①②③④.
    【点睛】
    本题主要考查了几何综合,其中涉及到了等边三角形判定及性质,相似三角形的判定及性质,全等三角形的性质及判定,三角函数的比值关系,矩形的性质等知识点,熟悉掌握几何图形的性质合理做出辅助线是解题的关键.
    2、
    【分析】
    根据题意连接BE,连接AE交FG于O,如图,利用菱形的性质得△BDC为等边三角形,∠ADC=120°,再在在Rt△BCE中计算出BE=CE=,然后证明BE⊥AB,利用勾股定理计算出AE,从而得到OA的长;设AF=x,根据折叠的性质得到FE=FA=x,在Rt△BEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在Rt△AOF中利用勾股定理计算出OF,再利用余弦的定义求解即可.
    【详解】
    解:连接BE,连接AE交FG于O,如图,

    ∵四边形ABCD为菱形,∠A=60°,
    ∴△BDC为等边三角形,∠ADC=120°,
    ∵E点为CD的中点,
    ∴CE=DE=1,BE⊥CD,
    在Rt△BCE中,BE=CE=,
    ∵AB∥CD,
    ∴BE⊥AB,
    ∴.
    ∴,
    设AF=x,
    ∵菱形纸片翻折,使点A落在CD的中点E处,
    ∴FE=FA=x,
    ∴BF=2-x,
    在Rt△BEF中,(2-x)2+()2=x2,
    解得:,
    在Rt△AOF中,,
    ∴.
    故答案为: .
    【点睛】
    本题考查了折叠的性质以及菱形的性质,注意掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    3、(-1,-2)
    【分析】
    平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).据此作答.
    【详解】
    解:根据中心对称的性质,得点P(1,2)关于原点中心对称的点的坐标为(-1,-2).
    故答案为:(-1,-2).
    【点睛】
    本题主要考查了关于原点对称的点的坐标特征,熟知关于原点对称的点的坐标特征是解题的关键.
    4、110°度
    【分析】
    过点E作EH∥AB,然后由AB∥CD,可得AB∥EH∥CD,然后根据两直线平行内错角相等可得∠ABE=∠BEH,∠CDE=∠DEH,然后根据周角的定义可求∠ABE+∠CDE的度数;再根据角平分线的定义求出∠EBF+∠EDF的度数,然后根据四边形的内角和定理即可求∠BFD的度数.
    【详解】
    解:过点E作EH∥AB,如图所示,

    ∵AB∥CD,
    ∴AB∥EH∥CD,
    ∴∠ABE=∠BEH,∠CDE=∠DEH,
    ∵∠BEH+∠DEH+∠BED=360°,∠BED=140°,
    ∴∠BEH+∠DEH=220°,
    ∴∠ABE+∠CDE=220°,
    ∵∠ABE和∠CDE的平分线相交于F,
    ∴∠EBF+∠EDF=(∠ABE+∠CDE)=110°,
    ∵∠BFD+∠BED+∠EBF+∠EDF=360°,
    ∴∠BFD=110°.
    故答案为:110°.
    【点睛】
    本题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.另外过点E作EH∥AB,也是解题的关键.
    5、七
    【分析】
    根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可求解.
    【详解】
    解:设多边形的边数为n,则
    (n-2)•180°-2×360°=180°,
    解得n=7.
    故答案为:七.
    【点睛】
    本题考查了多边形的内角和公式与外角和定理,熟记公式与定理列出方程是解题的关键.
    三、解答题
    1、
    【分析】
    由矩形的性质可知AB=DC,∠A=∠C=90°,由翻折的性质可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依据AAS可证明△DCE≌△BFE,依据勾股定理求得BC的长,由全等三角形的性质可知BE=DE,最后再△EDC中依据勾股定理可求得ED的长,从而得到BE的长.
    【详解】
    解:∵四边形ABCD为矩形,
    ∴AB=CD,∠A=∠C=90°
    ∵由翻折的性质可知∠F=∠A,BF=AB,
    ∴BF=DC,∠F=∠C.
    在△DCE与△BEF中,
    ∴△DCE≌△BFE.
    在Rt△BDC中,由勾股定理得:BC=.
    ∵△DCE≌△BFE,
    ∴BE=DE.
    设BE=DE=x,则EC=12−x.
    在Rt△CDE中,CE2+CD2=DE2,即(12−x)2+52=x2.
    解得:x=.
    ∴BE=.
    【点睛】
    本题主要考查的是翻折的性质、勾股定理的应用、矩形的性质,依据勾股定理列出关于x的方程是解题的关键.
    2、(1)选①或②或③,证明见详解;(2)①当时,结论成立;②当时,还成立,证明见详解.
    【分析】
    (1)命题①,根据等边三角形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题②,根据正方形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题③,根据正五边形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;
    (2)①根据(1)中三个命题的结果,得出相应规律,即可得解;
    ②连接BD、CE,根据全等三角形的判定定理和性质可得:, ,,,利用各角之间的关系及等量代换可得:, ,继续利用全等三角形的判定定理和性质即可得出证明.
    【详解】
    解:(1)如选命题①,证明:如图所示:


    ∵ ,
    ∴ ,
    ∵ ,
    ∴ ,
    在 与ΔCAN中,

    ∴ ,
    ∴ ;
    如选命题②,
    证明:如图所示:


    ∵ ,
    ∴ ,
    ∵ ,
    ∴ ,
    在 与ΔCDN中,

    ∴ ,
    ∴ ;
    如选命题③,
    证明:如图所示:


    ∵ ,
    ∴ ,
    ∵ ,
    ∴ ,
    在 与ΔCDN中,

    ∴ ,
    ∴ ;
    (2)①根据(1)中规律可得:当时,结论成立;
    ②答:当时,成立.
    证明:如图所示,连接BD、CE,


    在和中,

    ∴ ,
    ∴ ,,,
    ∵ ,
    ∴ ,
    ∵ ,.
    ∴ ,
    又∵ ,
    ∴ ,
    在和中,

    ∴ ,
    ∴ .
    【点睛】
    题目主要考查全等三角形的判定定理和性质,正多边形的内角,等腰三角形的性质,三角形内角和定理等,理解题意,结合相应图形证明是解题关键.
    3、(1)见解析;(2)90°
    【分析】
    (1)利用正方形的性质得出AD=AB,∠DAB=∠ABC=90°,再证明Rt△DAF≌Rt△ABE即可得出结论;
    (2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠BAE+∠DFA=90°,最后用三角形的内角和定理即可得出结论.
    【详解】
    (1)证明:∵四边形ABCD是正方形,
    ∴∠DAB=∠ABC=90°,AD=AB,
    在Rt△DAF和Rt△ABE中,

    ∴Rt△DAF≌Rt△ABE(HL),即△DAF≌△ABE.
    (2)解:由(1)知,△DAF≌△ABE,
    ∴∠ADF=∠BAE,
    ∵∠ADF+∠DFA=∠BAE+∠DFA=∠DAB=90°,
    ∴∠AOD=180°﹣(∠BAE+∠DFA)=90°.
    【点睛】
    本题主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和定理,判断出Rt△DAF≌Rt△ABE是解本题的关键.
    4、(1)证明见详解;(2)与面积相等的平行四边形有、、、.
    【分析】
    (1)根据三角形中位线定理可得:,,,,依据平行四边形的判定定理可得四边形DECF为平行四边形,再由,可得,依据菱形的判定定理即可证明;
    (2)根据三角形中位线定理及平行四边形的判定定理可得四边形DEFB、DECF、ADFE是平行四边形,根据平行四边形的性质得出与各平行四边形面积之间的关系,再根据平行四边形的判定得出四边形EGCF是平行四边形,根据其性质得到,根据等底同高可得,据此即可得出与面积相等的平行四边形.
    【详解】
    解:(1)∵D、E、F分别是AB、AC、BC的中点,
    ∴,,,,
    ∴四边形DECF为平行四边形,
    ∵,

    ∴四边形DECF为菱形;
    (2)∵D、E、F分别是AB、AC、BC的中点,
    ∴,,,,, ,
    且,,,
    ∴四边形DEFB、DECF、ADFE是平行四边形,
    ∴,
    ∵,,
    ∴四边形EGCF是平行四边形,
    ∴,
    ∴,

    ∴与面积相等的平行四边形有、、、.
    【点睛】
    题目主要考查菱形及平行四边形的判定定理和性质,中位线的性质等,熟练掌握平行四边形及菱形的判定定理及性质是解题关键.
    5、(1)见解析;(2)见解析
    【分析】
    (1)先证明四边形是平行四边形,结合,从而可得结论;
    (2)先证明,再求解 证明证明从而可得结论.
    【详解】
    (1)证明:四边形是平行四边形,
    .即
    ,,
    四边形是平行四边形.


    四边形是矩形;
    (2)四边形是平行四边形,


    四边形是矩形;

    在中,由勾股定理,得,



    即平分.
    【点睛】
    本题考查的是勾股定理的应用,角平分线的定义,平行四边形的判定与性质,矩形的判定,证明四边形是平行四边形是解(1)的关键,证明是解(2)的关键.

    相关试卷

    2021学年第十五章 四边形综合与测试随堂练习题:

    这是一份2021学年第十五章 四边形综合与测试随堂练习题,共24页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    数学八年级下册第十五章 四边形综合与测试当堂达标检测题:

    这是一份数学八年级下册第十五章 四边形综合与测试当堂达标检测题,共29页。试卷主要包含了下列说法中,不正确的是等内容,欢迎下载使用。

    数学第十五章 四边形综合与测试同步训练题:

    这是一份数学第十五章 四边形综合与测试同步训练题,共25页。试卷主要包含了以下分别是回收等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map