搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练京改版八年级数学下册第十五章四边形专项训练练习题(名师精选)

    2022年最新强化训练京改版八年级数学下册第十五章四边形专项训练练习题(名师精选)第1页
    2022年最新强化训练京改版八年级数学下册第十五章四边形专项训练练习题(名师精选)第2页
    2022年最新强化训练京改版八年级数学下册第十五章四边形专项训练练习题(名师精选)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课后测评

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后测评,共26页。试卷主要包含了下列说法中,不正确的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是(  )A.cm B.2cm C.1cm D.2cm2、如图,ABC是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是(    A.ABC都不在 B.只有BC.只有AC D.ABC3、如图,将矩形纸片ABCD沿BD折叠,得到△BCDCDAB交于点E,若∠1=40°,则∠2的度数为(  )A.25° B.20° C.15° D.10°4、下列说法中,不正确的是(    A.四个角都相等的四边形是矩形B.对角线互相平分且平分每一组对角的四边形是菱形C.正方形的对角线所在的直线是它的对称轴D.一组对边相等,另一组对边平行的四边形是平行四边形5、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是(    A. B.C.  D.6、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形.该小正方形的序号是(  )A. B. C. D.7、下面图案中既是轴对称图形又是中心对称图形的是(  )A. B. C. D.8、已知,四边形ABCD的对角线ACBD相交于点O.设有以下条件:①ABAD;②ACBD;③AOCOBODO;④四边形ABCD是矩形;⑤四边形ABCD是菱形;⑥四边形ABCD是正方形.那么,下列推理不成立的是(  )A.①④⇒⑥ B.①③⇒⑤ C.①②⇒⑥ D.②③⇒④9、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是(    A.三角形 B.四边形 C.五边形 D.六边形10、如图,在△ABC中,AC=BC=8,∠BCA=60°,直线ADBC于点DEAD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是(    A.1 B.1.5 C.2 D.4第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、点P(1,2)关于原点中心对称的点的坐标为_______.2、正方形ABCD的边长是8cm,点MBC边上,且MC=2cm,P是正方形边上的一个动点,连接PBAM于点N,当PB=AM时,PN的长是_____ .3、已知一个多边形内角和1800度,则这个多边形的边数_____.4、在平面直角坐标系中,与点(2,-7)关于y轴对称的点的坐标为____.5、如图,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,矩形ABCD中,,过对角线BD中点O的直线分别交ABCD边于点EF(1)求证:四边形BEDF是平行四边形.(2)当四边形BEDF是菱形时,求EF的长.2、如图,在RtABC中,∠ACB=90°.(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC,∠BDC的平分线,交ACBC于点EF(尺规作图,不写作法,保作图痕迹);(2)求证:四边形CEDF是矩形.3、(阅读材料)材料一:我们在小学学习过正方形,知道:正方形的四条边都相等,四个角都是直角;材料二:如图1,由一个等腰直角三角形和一个正方形组成的图形,我们要判断等腰直角三角形的面积与正方形的面积的大小关系,可以这样做:如图2,连接ACBD,把正方形分成四个与等腰三角形ADE全等的三角形,所以(解决问题)如图3,图中由三个正方形组成的图形(1)请你直接写出图中所有的全等三角形;(2)任意选择一组全等三角形进行证明;(3)设图中两个小正方形的面积分别为S1S2,若,求S1S2的值.4、(1)如图a,矩形ABCD的对角线AC、BD交于点O,过点DDPOC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.(2)如图b,如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如图c,如果题目中的矩形变为正方形,结论又应变为什么?说明理由.5、如图,在中,对角线ACBD交于点OAB=10,AD=8,ACBC,求(1)的面积;(2)△AOD的周长.
      -参考答案-一、单选题1、B【分析】由菱形的性质得ABBC=2(cm),OAOCOBODACBD,再证△ABC是等边三角形,得ACAB=2(cm),则OA=1(cm),然后由勾股定理求出OB(cm),即可求解.【详解】解:∵菱形ABCD的周长为8cmABBC=2(cm),OAOCOBODACBD∵∠ABC=60°,∴△ABC是等边三角形,ACAB=2cm,OA=1(cm),RtAOB中,由勾股定理得:OB(cm),BD=2OB=2(cm),故选:B.【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.2、D【分析】根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角形斜边上的中线性质即可得.【详解】解:如图所示:连接BD为直角三角形,DAC中点,∵覆盖半径为300 ,ABC三个点都被覆盖,故选:D.【点睛】题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键.3、D【分析】根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,CDAB
    ∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,
    由折叠可得∠DB C′=∠DBC=50°,
    ∴∠2=∠DB C′−∠DBA=50°−40°=10°,
    故选D.【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.4、D【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.【详解】解:A、四个角都相等的四边形是矩形,说法正确;B、正方形的对角线所在的直线是它的对称轴,说法正确;C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组对边相等且平行的四边形是平行四边形,原说法错误;故选:D【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键.5、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.6、B【分析】利用中心对称图形的定义判断即可.【详解】解:根据中心对称图形的定义可知,②满足条件.故选:【点睛】本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键.7、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.既是轴对称图形又是中心对称图形,故此选项符合题意.故选:D.【点睛】本题考查了轴对称图形和中心对称图形;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则此图形是轴对称图形,这条直线叫做对称轴;如果一个图形绕某一固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,固定的点叫对称中心;理解两个概念是解答本题的关键.8、C【分析】根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可.【详解】解:A、①④可以说明,一组邻边相等的矩形是正方形,故A正确.B、③可以说明四边形是平行四边形,再由①,一组临边相等的平行四边形是菱形,故B正确.C、①②,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误.D、③可以说明四边形是平行四边形,再由②可得:对角线相等的平行四边形为矩形,故D正确.故选:C.【点睛】本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键.9、A【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.【详解】解:多边形的外角和是360度,多边形的外角和是内角和的2倍,多边形的内角和是180度,这个多边形是三角形.故选:A.【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.10、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点GAC的中点,即可得出EG的最小值,此题得解.【详解】解:取线段AC的中点G,连接EG,如图所示.
    AC=BC=8,∠BCA=60°,
    ∴△ABC为等边三角形,且AD为△ABC的对称轴,
    CD=CG=AB=4,∠ACD=60°,
    ∵∠ECF=60°,
    ∴∠FCD=∠ECG
    在△FCD和△ECG中,
    ∴△FCD≌△ECGSAS),
    DF=GE
    EGBC时,EG最小,
    ∵点GAC的中点,
    ∴此时EG=DF=CD=BC=2.
    故选:C.【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.二、填空题1、(-1,-2)【分析】平面直角坐标系中任意一点Pxy),关于原点的对称点是(﹣x,﹣y).据此作答.【详解】解:根据中心对称的性质,得点P(1,2)关于原点中心对称的点的坐标为(-1,-2).故答案为:(-1,-2).【点睛】本题主要考查了关于原点对称的点的坐标特征,熟知关于原点对称的点的坐标特征是解题的关键.2、5cm或5.2cm【分析】当点PBC上,AMBP,当点PAB上,AMBP,当点PCD上,如图,根据PB=AM,可证Rt△ABM≌Rt△BCP(HL),可证BPAM,根据勾股定理可求AM=,根据三角形面积可求,可求PN=BP-BN;当点PAD上,如图,可证Rt△ABM≌Rt△BAP(HL),再证AN=PN=BN=MN,根据AM=BP=10cm,可求PN=cm,【详解】解:当点PBC上,AMBP,当点PAB上,AMBP,不合题意,舍去;当点PCD上,如图,PB=AM∵四边形ABCD为正方形,AB=BC=AD=CD=8,在Rt△ABM和Rt△BCP中,∴Rt△ABM≌Rt△BCP(HL),∴∠MAB=∠PBC∵∠MAB+∠AMB=90°,∴∠PBC+∠AMB=90°,∴∠BNM=180°-∠PBC-∠AMB=90°,BPAMMC=2cm,BM=BC-MC=8-2=6cm,AM=PN=BP-BN=AM-BN=10-4.8=5.2cm,
     当点PAD上,如图,在Rt△ABM和Rt△BAP中,∴Rt△ABM≌Rt△BAP(HL),BM=AP,∠AMB=∠BPA,∠MAB=∠PBAAN=BNAD∥BC∴∠PAN=∠NMB=∠APNAN=PN=BN=MNAM=BP=10cm,PN=cm,PN的长为5cm或5.2cm.故答案为5cm或5.2cm.
    【点睛】本题考查正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想,掌握正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想是解题关键.3、12【分析】设这个多边形的边数为n,根据多边形的内角和定理得到,然后解方程即可.【详解】解:设这个多边形的边数是n依题意得故答案为:12.【点睛】考查了多边形的内角和定理,关键是根据n边形的内角和为解答.4、(-2,-7)【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:点(2,-7)关于y轴对称的点的坐标是(-2,-7).故答案为:(-2,-7).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5、【分析】由正方形的对称性可知,PBPD,当BPE共线时PD+PE最小,求出BE即可.【详解】解:∵正方形中BD关于AC对称,PBPDPD+PEPB+PEBE,此时PD+PE最小,∵正方形ABCD的面积为18,△ABE是等边三角形,BE=3PD+PE最小值是3故答案为:3【点睛】本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键.三、解答题1、(1)证明见解析;(2)【分析】(1)由题意知,通过得到,证明四边形BEDF平行四边形.(2)四边形BEDF为菱形,;设;在中用勾股定理,解出的长,在中用勾股定理,得到的长,由得到的值.【详解】(1)证明:∵四边形ABCD是矩形,OBD的中点ASA∴四边形BEDF是平行四边形.(2)解:∵四边形BEDF为菱形,又∵,则中,中,【点睛】本题考察了平行四边形的判定,三角形全等,菱形的性质,勾股定理.解题的关键与难点在于对平行四边形的性质的灵活运用.2、(1)见解析(2)见解析【分析】(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明都是,最后加上,即可证明结论.【详解】(1)答案如下图所示:
     分别以AB两点为圆心,以大于长为半径画弧,连接弧的交点的直线即为垂直平分线l,其与AB的交点为D,以点D为圆心,适当长为半径画弧,分别交DA于点M,交CD于点N,交BD于点T,然后分别以点MN为圆心,大于为半径画弧,连接两弧交点与D点的连线交AC于点E,同理分别以点TN为圆心,大于为半径画弧,连接两弧交点与D点的连线交BC于点F(2)证明:点是AB与其垂直平分线l的交点,点是AB的中点,RtABC上的斜边的中线,DEDF分别是ADC,∠BDC的角平分线,在四边形CEDF中,四边形CEDF是矩形.【点睛】本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键.3、(1);(2)证明;证明见解析;(3)【分析】(1)根据图形可得出三对全等三角形;(2)根据正方形的性质及全等三角形的判定定理对(1)中全等三角形依次证明即可;(3)连接BG,由材料二可得,被分成4个面积相等的等腰直角三角形,即可得出;连接HJKI,过点HHMAD于点M,过点IINCD于点N,则被分为9个面积相等的等腰直角三角形,即可得出【详解】解:(1)(2)证明由题意得,在正方形ABCD中,证明:由题意得,在正方形HIJK中,∵AC为正方形ABCD的对角线,证明:由题意得,在正方形EBFG中,∵AC为正方形ABCD的对角线,(3)如图,连接BG,由材料二可得,被分成4个面积相等的等腰直角三角形, 连接HJKI,过点HHMAD于点M,过点IINCD于点N,则被分为9个面积相等的等腰直角三角形,【点睛】题目主要考查正方形的性质、全等三角形的判定定理及对题意的理解能力,熟练掌握全等三角形的判定定理及理解题意是解题关键.4、(1)四边形CODP是菱形,理由见解析;(2)四边形CODP是矩形,理由见解析;(3)四边形CODP是正方形,理由见解析【分析】(1)先证明四边形CODP是平行四边形,再由矩形的性质可得OD=OC,即可证明平行四边形OCDP是菱形;(2)先证明四边形CODP是平行四边形,再由菱形的性质可得∠DOC=90°,即可证明平行四边形OCDP是矩形;(3)先证明四边形CODP是平行四边形,再由正方形的性质可得BDACDO=OC,即可证明平行四边形OCDP是正方形;【详解】解:(1)四边形CODP是菱形,理由如下:DPOC,且DP=OC∴四边形CODP是平行四边形,又∵四边形ABCD是矩形,OD=OC∴平行四边形OCDP是菱形;(2)四边形CODP是矩形,理由如下:DPOC,且DP=OC∴四边形CODP是平行四边形,又∵四边形ABCD是菱形,BDAC∴∠DOC=90°,∴平行四边形OCDP是矩形;(3)四边形CODP是正方形,理由如下:DPOC,且DP=OC∴四边形CODP是平行四边形,又∵四边形ABCD是正方形,BDACDO=OC∴∠DOC=90°,平行四边形CODP是菱形,∴菱形OCDP是正方形.【点睛】本题主要考查了矩形的性质与判定,菱形的性质与判定,正方形的性质与判定,解题的关键在于能够熟练掌握特殊平行四边形的性质与判定条件.5、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面积;(2)根据平行四边形的性质求出AO,再利用勾股定理求出OB的长,故可求解.【详解】解:(1)∵四边形ABCD是平行四边形,且AD=8
     BC=AD=8ACBC∴∠ACB=90°RtABC中,由勾股定理得AC2=AB2-BC2(2)∵四边形ABCD是平行四边形,且AC=6∵∠ACB=90°,BC=8【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用. 

    相关试卷

    初中数学第十五章 四边形综合与测试课后复习题:

    这是一份初中数学第十五章 四边形综合与测试课后复习题,共30页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题,共29页。

    北京课改版八年级下册第十五章 四边形综合与测试练习题:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试练习题,共22页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map