初中数学北京课改版八年级下册第十五章 四边形综合与测试课后测评
展开
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后测评,共26页。试卷主要包含了下列说法中,不正确的是等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是( )A.cm B.2cm C.1cm D.2cm2、如图,A,B,C是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是( )A.A,B,C都不在 B.只有BC.只有A,C D.A,B,C3、如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E,若∠1=40°,则∠2的度数为( )A.25° B.20° C.15° D.10°4、下列说法中,不正确的是( )A.四个角都相等的四边形是矩形B.对角线互相平分且平分每一组对角的四边形是菱形C.正方形的对角线所在的直线是它的对称轴D.一组对边相等,另一组对边平行的四边形是平行四边形5、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是( )A. B.C. D.6、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形.该小正方形的序号是( )A. B. C. D.7、下面图案中既是轴对称图形又是中心对称图形的是( )A. B. C. D.8、已知,四边形ABCD的对角线AC和BD相交于点O.设有以下条件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四边形ABCD是矩形;⑤四边形ABCD是菱形;⑥四边形ABCD是正方形.那么,下列推理不成立的是( )A.①④⇒⑥ B.①③⇒⑤ C.①②⇒⑥ D.②③⇒④9、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )A.三角形 B.四边形 C.五边形 D.六边形10、如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A.1 B.1.5 C.2 D.4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点P(1,2)关于原点中心对称的点的坐标为_______.2、正方形ABCD的边长是8cm,点M在BC边上,且MC=2cm,P是正方形边上的一个动点,连接PB交AM于点N,当PB=AM时,PN的长是_____ .3、已知一个多边形内角和1800度,则这个多边形的边数_____.4、在平面直角坐标系中,与点(2,-7)关于y轴对称的点的坐标为____.5、如图,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,矩形ABCD中,,,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形.(2)当四边形BEDF是菱形时,求EF的长.2、如图,在Rt△ABC中,∠ACB=90°.(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC,∠BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);(2)求证:四边形CEDF是矩形.3、(阅读材料)材料一:我们在小学学习过正方形,知道:正方形的四条边都相等,四个角都是直角;材料二:如图1,由一个等腰直角三角形和一个正方形组成的图形,我们要判断等腰直角三角形的面积与正方形的面积的大小关系,可以这样做:如图2,连接AC,BD,把正方形分成四个与等腰三角形ADE全等的三角形,所以.(解决问题)如图3,图中由三个正方形组成的图形(1)请你直接写出图中所有的全等三角形;(2)任意选择一组全等三角形进行证明;(3)设图中两个小正方形的面积分别为S1和S2,若,求S1和S2的值.4、(1)如图a,矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.(2)如图b,如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如图c,如果题目中的矩形变为正方形,结论又应变为什么?说明理由.5、如图,在中,对角线AC、BD交于点O,AB=10,AD=8,AC⊥BC,求(1)的面积;(2)△AOD的周长.
-参考答案-一、单选题1、B【分析】由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.【详解】解:∵菱形ABCD的周长为8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB===(cm),∴BD=2OB=2(cm),故选:B.【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.2、D【分析】根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角形斜边上的中线性质即可得.【详解】解:如图所示:连接BD,∵,,,∴,∴为直角三角形,∵D为AC中点,∴,∵覆盖半径为300 ,∴A、B、C三个点都被覆盖,故选:D.【点睛】题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键.3、D【分析】根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,CD∥AB,
∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,
由折叠可得∠DB C′=∠DBC=50°,
∴∠2=∠DB C′−∠DBA=50°−40°=10°,
故选D.【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.4、D【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.【详解】解:A、四个角都相等的四边形是矩形,说法正确;B、正方形的对角线所在的直线是它的对称轴,说法正确;C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组对边相等且平行的四边形是平行四边形,原说法错误;故选:D.【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键.5、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.6、B【分析】利用中心对称图形的定义判断即可.【详解】解:根据中心对称图形的定义可知,②满足条件.故选:.【点睛】本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键.7、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.既是轴对称图形又是中心对称图形,故此选项符合题意.故选:D.【点睛】本题考查了轴对称图形和中心对称图形;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则此图形是轴对称图形,这条直线叫做对称轴;如果一个图形绕某一固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,固定的点叫对称中心;理解两个概念是解答本题的关键.8、C【分析】根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可.【详解】解:A、①④可以说明,一组邻边相等的矩形是正方形,故A正确.B、③可以说明四边形是平行四边形,再由①,一组临边相等的平行四边形是菱形,故B正确.C、①②,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误.D、③可以说明四边形是平行四边形,再由②可得:对角线相等的平行四边形为矩形,故D正确.故选:C.【点睛】本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键.9、A【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.【详解】解:多边形的外角和是360度,又多边形的外角和是内角和的2倍,多边形的内角和是180度,这个多边形是三角形.故选:A.【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.10、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解.【详解】解:取线段AC的中点G,连接EG,如图所示.
∵AC=BC=8,∠BCA=60°,
∴△ABC为等边三角形,且AD为△ABC的对称轴,
∴CD=CG=AB=4,∠ACD=60°,
∵∠ECF=60°,
∴∠FCD=∠ECG,
在△FCD和△ECG中,,
∴△FCD≌△ECG(SAS),
∴DF=GE.
当EG∥BC时,EG最小,
∵点G为AC的中点,
∴此时EG=DF=CD=BC=2.
故选:C.【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.二、填空题1、(-1,-2)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).据此作答.【详解】解:根据中心对称的性质,得点P(1,2)关于原点中心对称的点的坐标为(-1,-2).故答案为:(-1,-2).【点睛】本题主要考查了关于原点对称的点的坐标特征,熟知关于原点对称的点的坐标特征是解题的关键.2、5cm或5.2cm【分析】当点P在BC上,AM>BP,当点P在AB上,AM>BP,当点P在CD上,如图,根据PB=AM,可证Rt△ABM≌Rt△BCP(HL),可证BP⊥AM,根据勾股定理可求AM=,根据三角形面积可求,可求PN=BP-BN;当点P在AD上,如图,可证Rt△ABM≌Rt△BAP(HL),再证AN=PN=BN=MN,根据AM=BP=10cm,可求PN=cm,【详解】解:当点P在BC上,AM>BP,当点P在AB上,AM>BP,不合题意,舍去;当点P在CD上,如图,∵PB=AM∵四边形ABCD为正方形,∴AB=BC=AD=CD=8,在Rt△ABM和Rt△BCP中,,∴Rt△ABM≌Rt△BCP(HL),∴∠MAB=∠PBC,∵∠MAB+∠AMB=90°,∴∠PBC+∠AMB=90°,∴∠BNM=180°-∠PBC-∠AMB=90°,∴BP⊥AM,∵MC=2cm,∴BM=BC-MC=8-2=6cm,∴AM=,∴,∴,∴PN=BP-BN=AM-BN=10-4.8=5.2cm,
当点P在AD上,如图,在Rt△ABM和Rt△BAP中,,∴Rt△ABM≌Rt△BAP(HL),∴BM=AP,∠AMB=∠BPA,∠MAB=∠PBA,∴AN=BN,∵AD∥BC,∴∠PAN=∠NMB=∠APN,∴AN=PN=BN=MN,∵AM=BP=10cm,∴PN=cm,∴PN的长为5cm或5.2cm.故答案为5cm或5.2cm.
【点睛】本题考查正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想,掌握正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想是解题关键.3、12【分析】设这个多边形的边数为n,根据多边形的内角和定理得到,然后解方程即可.【详解】解:设这个多边形的边数是n,依题意得,∴,∴.故答案为:12.【点睛】考查了多边形的内角和定理,关键是根据n边形的内角和为解答.4、(-2,-7)【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:点(2,-7)关于y轴对称的点的坐标是(-2,-7).故答案为:(-2,-7).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5、【分析】由正方形的对称性可知,PB=PD,当B、P、E共线时PD+PE最小,求出BE即可.【详解】解:∵正方形中B与D关于AC对称,∴PB=PD,∴PD+PE=PB+PE=BE,此时PD+PE最小,∵正方形ABCD的面积为18,△ABE是等边三角形,∴BE=3,∴PD+PE最小值是3,故答案为:3.【点睛】本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键.三、解答题1、(1)证明见解析;(2)【分析】(1)由题意知,,通过得到,证明四边形BEDF平行四边形.(2)四边形BEDF为菱形,,;设,;在中用勾股定理,解出的长,在中用勾股定理,得到的长,由得到的值.【详解】(1)证明:∵四边形ABCD是矩形,O是BD的中点∴,在和中∴(ASA)∴∴四边形BEDF是平行四边形.(2)解:∵四边形BEDF为菱形,∴,又∵,∴,设,则在中,∴在中,∴.【点睛】本题考察了平行四边形的判定,三角形全等,菱形的性质,勾股定理.解题的关键与难点在于对平行四边形的性质的灵活运用.2、(1)见解析(2)见解析【分析】(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明与都是,最后加上,即可证明结论.【详解】(1)答案如下图所示:
分别以A、B两点为圆心,以大于长为半径画弧,连接弧的交点的直线即为垂直平分线l,其与AB的交点为D,以点D为圆心,适当长为半径画弧,分别交DA于点M,交CD于点N,交BD于点T,然后分别以点M,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交AC于点E,同理分别以点T,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交BC于点F.(2)证明:点是AB与其垂直平分线l的交点,点是AB的中点,是Rt△ABC上的斜边的中线,,DE、DF分别是ADC,∠BDC的角平分线,,, , ,, , , 在四边形CEDF中,, 四边形CEDF是矩形.【点睛】本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键.3、(1);;;(2)证明;证明见解析;(3),【分析】(1)根据图形可得出三对全等三角形;(2)根据正方形的性质及全等三角形的判定定理对(1)中全等三角形依次证明即可;(3)连接BG,由材料二可得,被分成4个面积相等的等腰直角三角形,即可得出;连接HJ,KI,过点H作HM⊥AD于点M,过点I作IN⊥CD于点N,则被分为9个面积相等的等腰直角三角形,即可得出.【详解】解:(1);;(2)证明;由题意得,在正方形ABCD中,∵,,在和中;证明:;由题意得,在正方形HIJK中,,,∵AC为正方形ABCD的对角线,∴,在和中,∴;证明:由题意得,在正方形EBFG中,,,∵AC为正方形ABCD的对角线,∴,在和中,∴;(3)如图,连接BG,由材料二可得,被分成4个面积相等的等腰直角三角形, .∴连接HJ,KI,过点H作HM⊥AD于点M,过点I作IN⊥CD于点N,则被分为9个面积相等的等腰直角三角形,∴.∴,.【点睛】题目主要考查正方形的性质、全等三角形的判定定理及对题意的理解能力,熟练掌握全等三角形的判定定理及理解题意是解题关键.4、(1)四边形CODP是菱形,理由见解析;(2)四边形CODP是矩形,理由见解析;(3)四边形CODP是正方形,理由见解析【分析】(1)先证明四边形CODP是平行四边形,再由矩形的性质可得OD=OC,即可证明平行四边形OCDP是菱形;(2)先证明四边形CODP是平行四边形,再由菱形的性质可得∠DOC=90°,即可证明平行四边形OCDP是矩形;(3)先证明四边形CODP是平行四边形,再由正方形的性质可得BD⊥AC,DO=OC,即可证明平行四边形OCDP是正方形;【详解】解:(1)四边形CODP是菱形,理由如下:∵DP∥OC,且DP=OC,∴四边形CODP是平行四边形,又∵四边形ABCD是矩形,∴OD=OC,∴平行四边形OCDP是菱形;(2)四边形CODP是矩形,理由如下:∵DP∥OC,且DP=OC,∴四边形CODP是平行四边形,又∵四边形ABCD是菱形,∴BD⊥AC,∴∠DOC=90°,∴平行四边形OCDP是矩形;(3)四边形CODP是正方形,理由如下:∵DP∥OC,且DP=OC,∴四边形CODP是平行四边形,又∵四边形ABCD是正方形,∴BD⊥AC,DO=OC,∴∠DOC=90°,平行四边形CODP是菱形,∴菱形OCDP是正方形.【点睛】本题主要考查了矩形的性质与判定,菱形的性质与判定,正方形的性质与判定,解题的关键在于能够熟练掌握特殊平行四边形的性质与判定条件.5、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面积;(2)根据平行四边形的性质求出AO,再利用勾股定理求出OB的长,故可求解.【详解】解:(1)∵四边形ABCD是平行四边形,且AD=8
∴BC=AD=8∵AC⊥BC∴∠ACB=90°在Rt△ABC中,由勾股定理得AC2=AB2-BC2∴∴(2)∵四边形ABCD是平行四边形,且AC=6∴∵∠ACB=90°,BC=8∴,∴∴.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用.
相关试卷
这是一份初中数学第十五章 四边形综合与测试课后复习题,共30页。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题,共29页。
这是一份北京课改版八年级下册第十五章 四边形综合与测试练习题,共22页。