2021学年第十五章 四边形综合与测试练习
展开京改版八年级数学下册第十五章四边形达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,于点C.已知,.点B到原点的最大距离为( )
A.22 B.18 C.14 D.10
2、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形.该小正方形的序号是( )
A. B. C. D.
3、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )
A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE
4、如图,在正方形有中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作⊥DE交DG的延长线于点H,连接,那么的值为( )
A.1 B. C. D.2
5、下列图形中,可以看作是中心对称图形的是( )
A. B.
C. D.
6、下列图形中,既是中心对称图形,又是轴对称图形的个数是( )
A.1 B.2 C.3 D.4
7、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA=,则点C的坐标为( )
A.(,1) B.(1,1) C.(1,) D.(+1,1)
8、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )
A.梯形 B.菱形 C.矩形 D.正方形
9、下列图形既是中心对称图形,又是轴对称图形的是( )
A. B.
C. D.
10、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( ).
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在数轴上,以单位长度为边长画一个正方形,点A对应的数是1,以点A为圆心,正方形对角线AB为半径画圆,圆与数轴的交点对应的数是 _____.
2、如图,正方形ABCD的边长为做正方形,使A,B,C,D是正方形各边的中点;做正方形,使是正方形各边的中点……以此类推,则正方形的边长为__________.
3、如图,矩形ABCD的两条对角线AC,BD交于点O,∠AOB=60°,AB=3,则矩形的周长为 _____.
4、如图,在矩形ABCD中,AB=3,BC=4,点P是对角线AC上一点,若点P、A、B组成一个等腰三角形时,△PAB的面积为___________.
5、一个多边形的内角和比它的外角和的2倍还多180°,则它是________边形.
三、解答题(5小题,每小题10分,共计50分)
1、(3)点P为AC上一动点,则PE+PF最小值为.
2、如图,矩形ABCD中,,,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形.
(2)当四边形BEDF是菱形时,求EF的长.
3、如图,在中,,D是边上的一点,过D作交于点E,,连接交于点F.
(1)求证:是的垂直平分线;
(2)若点D为的中点,且,求的长.
4、如图,在△ABC中,点D,E分别是AC,AB的中点,点F是CB延长线上的一点,且CF=3BF,连接DB,EF.
(1)求证:四边形DEFB是平行四边形;
(2)若∠ACB=90°,AC=12cm,DE=4cm,求四边形DEFB的周长.
5、如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,且AD=AF.
(1)判断四边形ABFC的形状并证明;
(2)若AB=3,∠ABC=60°,求EF的长.
-参考答案-
一、单选题
1、B
【分析】
首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离.
【详解】
解:取AC的中点E,连接BE,OE,OB,
∵∠AOC=90°,AC=16,
∴OE=CEAC=8,
∵BC⊥AC,BC=6,
∴BE10,
若点O,E,B不在一条直线上,则OB<OE+BE=18.
若点O,E,B在一条直线上,则OB=OE+BE=18,
∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为18.
故选:B
【点睛】
此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
2、B
【分析】
利用中心对称图形的定义判断即可.
【详解】
解:根据中心对称图形的定义可知,②满足条件.
故选:.
【点睛】
本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键.
3、B
【分析】
先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.
【详解】
解:∵四边形ABCD为平行四边形,
∴AD∥BC,且AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四边形BCED为平行四边形,
A、∵AB=BE,DE=AD,
∴BD⊥AE,
∴□DBCE为矩形,故本选项不符合题意;
B、∵DE⊥DC,
∴∠EDB=90°+∠CDB>90°,
∴四边形DBCE不能为矩形,故本选项符合题意;
C、∵∠ADB=90°,
∴∠EDB=90°,
∴□DBCE为矩形,故本选项不符合题意;
D、∵CE⊥DE,
∴∠CED=90°,
∴□DBCE为矩形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.
4、B
【分析】
作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.
【详解】
解:如图,在线段AD上截取AM,使AM=AE,
,
∵AD=AB,
∴DM=BE,
∵点A关于直线DE的对称点为F,
∴△ADE≌△FDE,
∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,
∴∠DFG=90°,
在Rt△DFG和Rt△DCG中,
∵,
∴Rt△DFG≌Rt△DCG(HL),
∴∠3=∠4,
∵∠ADC=90°,
∴∠1+∠2+∠3+∠4=90°,
∴2∠2+2∠3=90°,
∴∠2+∠3=45°,
即∠EDG=45°,
∵EH⊥DE,
∴∠DEH=90°,△DEH是等腰直角三角形,
∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,
∴∠1=∠BEH,
在△DME和△EBH中,
∵,
∴△DME≌△EBH(SAS),
∴EM=BH,
Rt△AEM中,∠A=90°,AM=AE,
∴,
∴ ,即=.
故选:B.
【点睛】
本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.
5、C
【分析】
根据中心对称图形的定义进行逐一判断即可.
【详解】
解:A、不是中心对称图形,故此选项不符合题意;
B、不是中心对称图形,故此选项不符合题意;
C、是中心对称图形,故此选项符合题意;
D、不是中心对称图形,故此选项不符合题意;
故选C.
【点睛】
本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
6、B
【分析】
根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解
【详解】
第一个图形是中心对称图形,又是轴对称图形,
第二个图形是中心对称图形,又是轴对称图形,
第三个图形不是中心对称图形,是轴对称图形,
第四个图形不是中心对称图形,是轴对称图形,
综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形.
故选:B.
【点睛】
点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
7、B
【分析】
作CD⊥x轴,根据菱形的性质得到OC=OA=,在Rt△OCD中,根据勾股定理求出OD的值,即可得到C点的坐标.
【详解】
:作CD⊥x轴于点D,
则∠CDO=90°,
∵四边形OABC是菱形,OA=,
∴OC=OA=,
又∵∠AOC=45°,
∴∠OCD=90°-∠AOC=90°-45°=45°,
∴∠DOC=∠OCD,
∴CD=OD,
在Rt△OCD中,OC=,CD2+OD2=OC2,
∴2OD2=OC2=2,
∴OD2=1,
∴OD=CD=1(负值舍去),
则点C的坐标为(1,1),
故选:B.
【点睛】
此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.
8、B
【分析】
根据题意得到,然后根据菱形的判定方法求解即可.
【详解】
解:由题意可得:,
∴四边形是菱形.
故选:B.
【点睛】
此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法.菱形的判定定理:①四条边都相等四边形是菱形;②一组邻边相等的平行四边形是菱形;③对角线垂直的平行四边形是菱形.
9、D
【分析】
一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可.
【详解】
A、既不是中心对称图形,也不是轴对称图形,故不符合题意;
B、是轴对称图形,但不是中心对称图形,故不符合题意;
C、是中心对称图形,但不是轴对称图形,故不符合题意;
D、既是中心对称图形,也是轴对称图形,故符合题意.
【点睛】
本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键.
10、C
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.
【详解】
解:A、此图形不是中心对称图形,故本选项不符合题意;
B、此图形不是中心对称图形,故此选项不符合题意;
C、此图形是中心对称图形,故此选项符合题意;
D、此图形不是中心对称图形,故此选项不符合题意.
故选:C.
【点睛】
此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.
二、填空题
1、或.
【分析】
根据正方形的面积公式得出面积为1,根据正方形面积公式为对角线AB乘积的一半求出正方形的对角线长,利用点A的位置,得出圆与数轴的交点对应的数即可.
【详解】
解:∵以单位长度为边长画一个正方形,
∴正方形面积为1,
∴,
∴AB=,
∵点A在1的位置,
∴圆与数轴的交点对应的数为或.
故答案为或.
【点睛】
本题考查数轴上点表示数,正方形性质,算术平方根,图形旋转,掌握数轴上点表示数,正方形性质,图形旋转特征是解题关键
2、
【分析】
利用正方形ABCD的及勾股定理,求出的长,再根据勾股定理求出和的长,找出规律,即可得出正方形的边长.
【详解】
解:∵A,B,C,D是正方形各边的中点
∴,
∵正方形ABCD的边长为,即AB=,
∴,解得:,
∴==2,
同理==2,
==4 …,
∴,
∴=,
∴的边长为
故答案为:.
【点睛】
本题考查了正方形性质、勾股定理的应用,解此题的关键是能根据计算结果得出规律,本题具有一定的代表性,是一道比较好的题目.
3、##
【分析】
根据矩形性质得出AD=BC,AB=CD,∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,推出OA=OB=OC=OD,得出等边三角形AOB,求出BD,根据勾股定理求出AD即可.
【详解】
解:∵四边形ABCD是矩形,
∴∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,
∴OA=OB=OC=OD,
∵∠AOB=60°,OB=OA,
∴△AOB是等边三角形,
∵AB=3,
∴OA=OB=AB=3,
∴BD=2OB=6,
在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=3,
∵四边形ABCD是矩形,
∴AB=CD=3,AD=BC=3,
∴矩形ABCD的周长是AB+BC+CD+AD=6+6.
故答案为:6+6.
【点睛】
本题考查了矩形性质,等边三角形的性质和判定,勾股定理等知识点,关键是求出AD的长.
4、或或3
【分析】
过B作BM⊥AC于M,根据矩形的性质得出∠ABC=90°,根据勾股定理求出AC,根据三角形的面积公式求出高BM,分为三种情况:①AB=BP=3,②AB=AP=3,③AP=BP,分别画出图形,再求出面积即可.
【详解】
解:∵四边形ABCD是矩形,
∴∠ABC=90°,
由勾股定理得:,
有三种情况:
①当AB=BP=3时,如图1,过B作BM⊥AC于M,
S△ABC=,
,
解得:,
∵AB=BP=3,BM⊥AC,
∴,
∴AP=AM+PM=,
∴△PAB的面积=;
②当AB=AP=3时,如图2,
∵BM=,
∴△PAB的面积S=;
③作AB的垂直平分线NQ,交AB于N,交AC于P,如图3,则AP=BP,BN=AN=,
∵四边形ABCD是矩形,NQ⊥AC,
∴PN∥BC,
∵AN=BN,
∴AP=CP,
∴,
∴△PAB的面积;
即△PAB的面积为或或3.
故答案为:或或3.
【点睛】
本题主要是考查了矩形的性质、等腰三角形的判定以及勾股定理求边长,熟练掌握矩形的性质,利用等腰三角形的判定,分成三种情况讨论,是解决本题的关键.
5、七
【分析】
根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可求解.
【详解】
解:设多边形的边数为n,则
(n-2)•180°-2×360°=180°,
解得n=7.
故答案为:七.
【点睛】
本题考查了多边形的内角和公式与外角和定理,熟记公式与定理列出方程是解题的关键.
三、解答题
1、见解析
【分析】
(1)根据折叠的性质可得:∠1=∠2,再由矩形的性质,可得∠2=∠3,从而得到∠1=∠3,即可求解;
(2)设FD=x,则AF=CF=8-x,再由勾股定理,可得DF=3,从而得到CF=5,即可求解;
(3)连接PB,根据折叠的性质可得△ECP≌△BCP,从而得到PE=PB,进而得到当点F、P、B三点共线时,PE+PF最小,最小值为BF的长,再由勾股定理,即可求解.
【详解】
(1)解:△ACF是等腰三角形,理由如下:
如图,
由折叠可知,∠1=∠2,
∵四边形ABCD是矩形,
∴AB∥CD,
∴∠2=∠3,
∴∠1=∠3,
∴AF=CF,
∴△ACF是等腰三角形;
(2)∵四边形ABCD是矩形且AB=8,BC=4,
∴AD=BC=4,CD=AB=8,∠D=90°,
设FD=x,则AF=CF=8-x,
在Rt△AFD中,根据勾股定理得AD2+DF2=AF2,
∴42+x2=(8-x)2,
解得x=3 ,即DF=3,
∴CF=8-3=5,
∴;
(3)如图,连接PB,
根据折叠得:CE=CB,∠ECP=∠BCP,
∵CP=CP,
∴△ECP≌△BCP,
∴PE=PB,
∴PE+PF=PE+PB,
∴当点F、P、B三点共线时,PE+PF最小,最小值为BF的长,
由(2)知:CF=5,
∵BC=4,∠BCF=90°,
∴ ,
即PE+PF最小值为 .
【点睛】
本题主要考查了矩形与折叠问题,等腰三角形的判定,熟练掌握矩形和折叠的性质是解题的关键.
2、(1)证明见解析;(2)
【分析】
(1)由题意知,,通过得到,证明四边形BEDF平行四边形.
(2)四边形BEDF为菱形,,;设,;在中用勾股定理,解出的长,在中用勾股定理,得到的长,由得到的值.
【详解】
(1)证明:∵四边形ABCD是矩形,O是BD的中点
∴,
在和中
∴(ASA)
∴
∴四边形BEDF是平行四边形.
(2)解:∵四边形BEDF为菱形,
∴,
又∵,
∴,
设,则
在中,
∴
在中,
∴.
【点睛】
本题考察了平行四边形的判定,三角形全等,菱形的性质,勾股定理.解题的关键与难点在于对平行四边形的性质的灵活运用.
3、(1)见解析;(2)6
【分析】
(1)由BC=BD,可得∠BCD=∠BDC,再由及,可得∠ECD=∠EDC,则有EC=ED,从而可得点B、E在线段CD的垂直平分线上,从而可得结论;
(2)由D点是AB的中点及BC=BD,可得△BDC是等边三角形,从而由30度的直角三角形的性质可分别求得EC、BE,由AE=BE,即可求得AC的长.
【详解】
(1)∵BC=BD
∴∠BCD=∠BDC,点B在线段CD的垂直平分线上
∵,
∴∠BCD+∠ECD=∠EDC+∠BDC
∴∠ECD=∠EDC
∴EC=ED
∴点E在线段CD的垂直平分线上
∴BE是线段CD的垂直平分线
(2)D点是AB的中点,∠ACB=90゜
∴CD是Rt△ABC斜边上的中线
∴CD=BD
∴CD=BC=BD
∴△BDC是等边三角形
∴∠BCD=∠DBC=60゜
∴∠ECF=90゜-60゜=30゜
由(1)知,BF⊥CD
∴EC=2EF=2,
∴BE=2EC=4
∵DE⊥AB,点D为AB的中点
∴AE=BE=4
∴AC=AE+EC=4+2=6
【点睛】
本题考查了线段垂直平分线的性质定理和判定定理,直角三角形斜边上的中线的性质,30度角的直角三角形的性质,等边三角形的判定与性质;题目虽不难,但涉及的知识点比较多,灵活运用这些知识是解题的关键.
4、(1)见解析;(2)平行四边形DEFB的周长=
【分析】
(1)证DE是△ABC的中位线,得DE∥BC,BC=2DE,再证DE=BF,即可得出四边形DEFB是平行四边形;
(2)由(1)得:BC=2DE=8(cm),BF=DE=4cm,四边形DEFB是平行四边形,得BD=EF,再由勾股定理求出BD=10(cm),即可求解.
【详解】
(1)证明:∵点D,E分别是AC,AB的中点,
∴DE是△ABC的中位线,
∴DE//BC,BC=2DE,
∵CF=3BF,
∴BC=2BF,
∴DE=BF,
∴四边形DEFB是平行四边形;
(2)解:由(1)得:BC=2DE=8(cm),BF=DE=4cm,四边形DEFB是平行四边形,
∴BD=EF,
∵D是AC的中点,AC=12cm,
∴CD=AC=6(cm),
∵∠ACB=90°,
∴BD==10(cm),
∴平行四边形DEFB的周长=2(DE+BD)=2(4+10)=28(cm).
【点睛】
本题考查了平行四边形的判定与性质、三角形中位线定理、勾股定理等知识;熟练掌握三角形中位线定理,证明四边形DEFB为平行四边形是解题的关键.
5、(1)矩形,见解析;(2)3
【分析】
(1)利用AAS判定△ABE≌△FCE,从而得到AB=CF;由已知可得四边形ABFC是平行四边形,BC=AF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形;
(2)先证△ABE是等边三角形,可得AB=AE=EF=3.
【详解】
解:(1)四边形ABFC是矩形,理由如下:
∵四边形ABCD是平行四边形,
∴,
∴∠BAE=∠CFE,∠ABE=∠FCE,
∵E为BC的中点,
∴EB=EC,
在△ABE和△FCE中,
,
∴△ABE≌△FCE(AAS),
∴AB=CF.
∵,
∴四边形ABFC是平行四边形,
∵AD=BC,AD=AF,
∴BC=AF,
∴四边形ABFC是矩形.
(2)∵四边形ABFC是矩形,
∴BC=AF,AE=EF,BE=CE,
∴AE=BE,
∵∠ABC=60°,
∴△ABE是等边三角形,
∴AB=AE=3,
∴EF=3.
【点睛】
本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,等边三角形的性质与判定,掌握以上性质定理是解题的关键.
初中数学北京课改版八年级下册第十五章 四边形综合与测试课时练习: 这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时练习,共26页。
北京课改版八年级下册第十五章 四边形综合与测试课时训练: 这是一份北京课改版八年级下册第十五章 四边形综合与测试课时训练,共33页。
初中数学第十五章 四边形综合与测试课后复习题: 这是一份初中数学第十五章 四边形综合与测试课后复习题,共30页。