北京课改版八年级下册第十五章 四边形综合与测试课时作业
展开
这是一份北京课改版八年级下册第十五章 四边形综合与测试课时作业,共25页。试卷主要包含了下列图形中不是中心对称图形的是,下列∠A等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形ABCD中,∠A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )A. B. C. D.2、在平面直角坐标系中,点关于原点对称的点的坐标是( )A. B. C. D.3、平行四边形中,,则的度数是( )A. B. C. D.4、下列图形中不是中心对称图形的是( )A. B. C. D.5、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )A.5 B.4 C.3 D.26、下列∠A:∠B:∠C:∠D的值中,能判定四边形ABCD是平行四边形的是( )A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:27、如图,矩形ABCD的对角线AC和BD相交于点O,若∠AOD=120°,AC=16,则AB的长为( )A.16 B.12 C.8 D.48、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )A.46.5cm B.22.5cm C.23.25cm D.以上都不对9、如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E,若∠1=40°,则∠2的度数为( )A.25° B.20° C.15° D.10°10、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点D、E分别是△ABC边AB、AC的中点,已知BC=12,则DE=_____2、如图,矩形ABCD中,AC、BD相交于点O且AC=12,如果∠AOD=60°,则DC=__.3、一个正多边形的每一个内角比每一个外角的5倍还小60°,则这个正多边形的边数为__________.4、如图,在中,,,,为上的两个动点,且,则的最小值是________.5、坐标平面内的点P(m,﹣2020)与点Q(2021,n)关于原点对称,则m+n=_________.三、解答题(5小题,每小题10分,共计50分)1、如图,已知矩形中,点,分别是,上的点,,且.(1)求证:;(2)若,求:的值.2、已知:如图:五边形ABCDE的内角都相等,DF⊥AB.(1)则∠CDF= (2)若ED=CD,AE=BC,求证:AF=BF.3、如图,已知正方形中,点是边延长线上一点,连接,过点作,垂足为点,与交于点.(1)求证:;(2)若,,求 BG的长.4、综合与实践(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为 .(2)如图2,在四边形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.(3)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN的数量关系为 .5、(阅读材料)材料一:我们在小学学习过正方形,知道:正方形的四条边都相等,四个角都是直角;材料二:如图1,由一个等腰直角三角形和一个正方形组成的图形,我们要判断等腰直角三角形的面积与正方形的面积的大小关系,可以这样做:如图2,连接AC,BD,把正方形分成四个与等腰三角形ADE全等的三角形,所以.(解决问题)如图3,图中由三个正方形组成的图形(1)请你直接写出图中所有的全等三角形;(2)任意选择一组全等三角形进行证明;(3)设图中两个小正方形的面积分别为S1和S2,若,求S1和S2的值. -参考答案-一、单选题1、A【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值. 连接DB,过点D作DH⊥AB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:∵ED=EM,MF=FN, ∴EF=DN, ∴DN最大时,EF最大, ∴N与B重合时DN=DB最大,在Rt△ADH中, ∵∠A=60° ∴AH=2×=1,DH=,∴BH=AB﹣AH=3﹣1=2, ∴DB=, ∴EFmax=DB=, ∴EF的最大值为.故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键.2、A【分析】关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.【详解】解:点关于原点对称的点的坐标是: 故选A【点睛】本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.3、B【分析】根据平行四边形对角相等,即可求出的度数.【详解】解:如图所示,∵四边形是平行四边形,∴,∴,∴.故:B.【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.4、B【分析】根据中心对称图形的概念求解.【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意.故选:B.【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.5、A【分析】利用直角三角形斜边的中线的性质可得答案.【详解】解:∵∠C=90°,若D为斜边AB上的中点,
∴CD=AB,
∵AB的长为10,
∴DC=5,
故选:A.【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.6、D【分析】两组对角分别相等的四边形是平行四边形,所以∠A和∠C是对角,∠B和∠D是对角,对角的份数应相等.【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件.故选:D.【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.7、C【分析】由题意可得AO=BO=CO=DO=8,可证△ABO是等边三角形,可得AB=8.【详解】解:∵四边形ABCD是矩形,∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,∴OA=OB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=AO=BO=8,故选:C.【点睛】本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键.8、C【分析】如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,则,,,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.【详解】解:如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,∴,,,∴△DEF的周长,同理可得:△GHI的周长,∴第三次作中位线得到的三角形周长为,∴第四次作中位线得到的三角形周长为∴第三次作中位线得到的三角形周长为∴这五个新三角形的周长之和为,故选C.【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.9、D【分析】根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,CD∥AB,
∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,
由折叠可得∠DB C′=∠DBC=50°,
∴∠2=∠DB C′−∠DBA=50°−40°=10°,
故选D.【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.10、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.二、填空题1、6【分析】根据三角形的中位线等于第三边的一半进行计算即可.【详解】解:∵D、E分别是△ABC边AB、AC的中点,∴DE是△ABC的中位线,∵BC=12,∴DE=BC=6,故答案为6.【点睛】本题主要考查了三角形中位线定理,熟知三角形中位线定理是解题的关键.2、【分析】根据矩形的对角线互相平分且相等可得OA=OD,然后判断出△AOD是等边三角形,再根据勾股定理解答即可.【详解】解:∵四边形ABCD是矩形,∴OA=OD=AC=×12=6,∠ADC=90°,∵∠AOD=60°,∴△AOD是等边三角形,∴AD=OA=6,∴.故答案为:.【点睛】本题考查了矩形的性质和勾股定理以及等边三角形的判定,解题关键是根据矩形的性质得出△AOD是等边三角形.3、9【分析】设正多边形的外角为x度,则可用代数式表示出内角,再由内角与外角互补的关系得到方程,解方程即可求得每一个外角,再根据多边形的外角和为360度即可求得正多边形的边数.【详解】设正多边形的外角为x度,则内角为(5x−60)度由题意得:解得:则正多边形的边数为:360÷40=9即这个正多边形的边数为9故答案为:9【点睛】本题考查了正多边形的内角与外角,关键是运用方程求得正多边形的外角.4、【分析】过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A′,连接AA′交BC于点O,连接A′M,三点D、M、A′共线时,最小为A′D的长,利用勾股定理求A′D的长度即可解决问题.【详解】解:过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN是平行四边形,
∴MD=AN,AD=MN,
作点A关于BC的对称点A′,连接A A′交BC于点O,连接A′M,
则AM=A′M,
∴AM+AN=A′M+DM,
∴三点D、M、A′共线时,A′M+DM最小为A′D的长,
∵AD//BC,AO⊥BC,
∴∠DA=90°,
∵,,,
∴BC=BO=CO=AO=,∴,
在Rt△AD中,由勾股定理得:
D=
∴的最小是值为:,故答案为:【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键.5、-1【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解.【详解】解:∵点P(m,-2020)与点Q(2021,n)关于原点对称,∴m=﹣2021,n=2020,∴m+n=﹣1.故答案为:-1.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.三、解答题1、(1)见解析;(2)【分析】(1)根据矩形的性质得到,由垂直的定义得到,根据余角的性质得到,根据全等三角形的判定和性质即可得到结论;(2)由已知条件得到,由,即可得到:的值.【详解】(1)∵四边形是矩形,∴,∵,∴,∴,∴,在与中,,∴,∴;(2)∵,∴,∵,∴,∴.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.2、(1)54°;(2)见解析.【分析】(1)根据多边形内角和度数可得每一个角的度数,然后再利用四边形DFBC内角和计算出∠CDF的度数;(2)连接AD、DB,然后证明△DEA≌△DCB可得AD=DB,再根据等腰三角形的性质可得AF=BF.【详解】解:(1)∵五边形ABCDE的内角都相等,∴∠C=∠B=∠EDC=180°×(5﹣2)÷3=108°,∵DF⊥AB,∴∠DFB=90°,∴∠CDF=360°﹣90°﹣108°﹣108°=54°,故答案为:54°.(2)连接AD、DB,在△AED和△BCD中,,∴△DEA≌△DCB(SAS),∴AD=DB,∵DF⊥AB,∴AF=BF.【点睛】本题主要考查了多边形内角和公式,全等三角形的性质与判定,等腰三角形的性质与判定,熟练掌握多边形内角和公式是解题的关键.3、(1)见解析;(2)【分析】(1)由正方形的性质可得,,由的余角相等可得∠CBG=∠CDE,进而证明△BCG≌△DCE,从而证明CG=CE;(2)证明正方形的性质可得,结合已知条件即可求得,进而勾股定理即可求得的长【详解】(1)∵BF⊥DE∴∠BFE=90°∵四边形ABCD是正方形∴∠DCE=90°,∴∠CBG+∠E=∠CDE+∠E,∴∠CBG=∠CDE∴△BCG≌△DCE∴CG=CE(2)∵,且,,∴∵CG=CE ∴,在中,【点睛】本题考查了正方形的性质,全等三角形的性质与判定,勾股定理,掌握三角形全等的性质与判定与勾股定理是解题的关键.4、(1)MN=AM+CN;(2)MN=AM+CN,理由见解析;(3)MN=CN-AM,理由见解析【分析】(1)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到点M'、C、N三点共线,再由∠MBN=45°,可得∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;(2)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得点M'、C、N三点共线,再由∠MBN=∠ABC,可得到∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;(3)在NC上截取C M'=AM,连接B M',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可证得△ABM≌△CB M',从而得到AM=C M',BM=B M',∠ABM=∠CB M',进而得到∠MA M'=∠ABC,再由∠MBN=∠ABC,可得∠MBN=∠M'BN,从而得到△NBM≌△NBM',即可求解.【详解】解:(1)如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC ,∴∠BCM'+∠BCD=180°,∴点M'、C、N三点共线,∵∠MBN=45°,∴∠ABM+∠CBN=45°,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN= M'N,∵M'N= M'C+CN,∴MN= M'C+CN=AM+CN;(2)MN=AM+CN;理由如下:如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,∵∠A+∠C=180°,∴∠BCM'+∠BCD=180°,∴点M'、C、N三点共线,∵∠MBN=∠ABC,∴∠ABM+∠CBN=∠ABC=∠MBN,∴∠CBN+∠M'BC =∠MBN,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN= M'N,∵M'N= M'C+CN,∴MN= M'C+CN=AM+CN;(3)MN=CN-AM,理由如下:如图,在NC上截取C M'=AM,连接B M',∵在四边形ABCD中,∠ABC+∠ADC=180°,∴∠C+∠BAD=180°,∵∠BAM+∠BAD=180°,∴∠BAM=∠C,∵AB=BC,∴△ABM≌△CB M',∴AM=C M',BM=B M',∠ABM=∠CB M',∴∠MA M'=∠ABC,∵∠MBN=∠ABC,∴∠MBN=∠MA M'=∠M'BN,∵BN=BN,∴△NBM≌△NBM',∴MN= M'N,∵M'N=CN-C M', ∴MN=CN-AM.故答案是:MN=CN-AM.【点睛】本题主要考查了正方形的性质,全等三角形的性质和判定,图形的旋转,根据题意做适当辅助线,得到全等三角形是解题的关键.5、(1);;;(2)证明;证明见解析;(3),【分析】(1)根据图形可得出三对全等三角形;(2)根据正方形的性质及全等三角形的判定定理对(1)中全等三角形依次证明即可;(3)连接BG,由材料二可得,被分成4个面积相等的等腰直角三角形,即可得出;连接HJ,KI,过点H作HM⊥AD于点M,过点I作IN⊥CD于点N,则被分为9个面积相等的等腰直角三角形,即可得出.【详解】解:(1);;(2)证明;由题意得,在正方形ABCD中,∵,,在和中;证明:;由题意得,在正方形HIJK中,,,∵AC为正方形ABCD的对角线,∴,在和中,∴;证明:由题意得,在正方形EBFG中,,,∵AC为正方形ABCD的对角线,∴,在和中,∴;(3)如图,连接BG,由材料二可得,被分成4个面积相等的等腰直角三角形, .∴连接HJ,KI,过点H作HM⊥AD于点M,过点I作IN⊥CD于点N,则被分为9个面积相等的等腰直角三角形,∴.∴,.【点睛】题目主要考查正方形的性质、全等三角形的判定定理及对题意的理解能力,熟练掌握全等三角形的判定定理及理解题意是解题关键.
相关试卷
这是一份初中数学第十五章 四边形综合与测试同步训练题,共26页。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时训练,共30页。
这是一份北京课改版八年级下册第十五章 四边形综合与测试习题,共23页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。