终身会员
搜索
    上传资料 赚现金

    精品试卷京改版八年级数学下册第十五章四边形专题练习试卷(含答案详解)

    立即下载
    加入资料篮
    精品试卷京改版八年级数学下册第十五章四边形专题练习试卷(含答案详解)第1页
    精品试卷京改版八年级数学下册第十五章四边形专题练习试卷(含答案详解)第2页
    精品试卷京改版八年级数学下册第十五章四边形专题练习试卷(含答案详解)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册第十五章 四边形综合与测试课时练习

    展开

    这是一份数学八年级下册第十五章 四边形综合与测试课时练习,共26页。试卷主要包含了下列图形中,是中心对称图形的是,下列图形中不是中心对称图形的是等内容,欢迎下载使用。


    京改版八年级数学下册第十五章四边形专题练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列图案中既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    2、下列图中,既是轴对称图形又是中心对称图形的是(  )
    A. B. C. D.
    3、下列图案中,是中心对称图形的是( )
    A. B. C. D.
    4、下列图形中,是中心对称图形的是( )
    A. B. C. D.
    5、下列图形中不是中心对称图形的是( )
    A. B. C. D.
    6、如图菱形ABCD,对角线AC,BD相交于点O,若BD=8,AC=6,则AB的长是( )

    A.5 B.6 C.8 D.10
    7、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )

    A.梯形 B.菱形 C.矩形 D.正方形
    8、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为(  )

    A.180° B.360°
    C.540° D.不能确定
    9、下列图形既是中心对称图形,又是轴对称图形的是( )
    A. B.
    C. D.
    10、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )
    A.46.5cm B.22.5cm C.23.25cm D.以上都不对
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,每个小正方形的边长都为1,△ABC是格点三角形,点D为AC的中点,则线段BD的长为 _____.

    2、若一个多边形的内角和是外角和的倍,则它的边数是_______.
    3、若一个菱形的两条对角线的长为3和4,则菱形的面积为___________.
    4、如图,点O是正方形ABCD的称中心O,互相垂直的射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF;已知.
    (1)以点E,O,F,D为顶点的图形的面积为________________;
    (2)线段EF的最小值是_______________.

    5、一个多边形的内角和为1080°,则它是______边形.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,△AOB是等腰直角三角形.
    (1)若A(﹣4,1),求点B的坐标;
    (2)AN⊥y轴,垂足为N,BM⊥y轴,垂足为点M,点P是AB的中点,连PM,求∠PMO度数;
    (3)在(2)的条件下,点Q是ON的中点,连PQ,求证:PQ⊥AM.

    2、如图,在平行四边形中,,..点在上由点向点出发,速度为每秒;点在边上,同时由点向点运动,速度为每秒.当点运动到点时,点,同时停止运动.连接,设运动时间为秒.

    (1)当为何值时,四边形为平行四边形?
    (2)设四边形的面积为,求与之间的函数关系式.
    (3)当为何值时,四边形的面积是四边形的面积的四分之三?求出此时的度数.
    (4)连接,是否存在某一时刻,使为等腰三角形?若存在,请求出此刻的值;若不存在,请说明理由.
    3、(1)如图1,∠ADC=120°,∠BCD=140°,∠DAB和∠CBE的平分线交于点,则∠AFB的度数是 ;
    (2)如图2,若∠ADC=,∠BCD=,且,∠DAB和∠CBE的平分线交于点,则∠AFB=   (用含,的代数式表示);
    (3)如图3,∠ADC=,∠BCD=,当∠DAB和∠CBE的平分线AG,BH平行时,,应该满足怎样的数量关系?请说明理由;

    (4)如果将(2)中的条件改为,再分别作∠DAB和∠CBE的平分线,∠AFB与,满足怎样的数量关系?请画出图形并直接写出结论.
    4、如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE

    5、如图,四边形ABCD是一个菱形绿草地,其周长为40m,∠ABC=120°,在其内部有一个矩形花坛EFGH,其四个顶点恰好在菱形ABCD各边中点,现准备在花坛中种植茉莉花,其单价为30元/m2,则需投资资金多少元?( 取1.732)


    -参考答案-
    一、单选题
    1、B
    【详解】
    A.是轴对称图形,不是中心对称图形,故不符合题意;
    B. 既是轴对称图形,又是中心对称图形,故符合题意;
    C.是轴对称图形,不是中心对称图形,故不符合题意;
    D.既不是轴对称图形,也不是中心对称图形,故不符合题意;
    故选B
    【点睛】
    本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
    2、D
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、不是轴对称图形,也不是中心对称图形.故本选项不合题意;
    B、是轴对称图形,不是中心对称图形.故本选项不合题意;
    C、不是轴对称图形,是中心对称图形.故本选项不合题意;
    D、既是轴对称图形又是中心对称图形.故本选项符合题意.
    故选:D.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    3、B
    【分析】
    由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可.
    【详解】
    解:A、C、D都是轴对称图形,只有B选项是中心对称图形.
    故选:B.
    【点睛】
    本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    4、B
    【分析】
    根据中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
    【详解】
    选项、、均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,
    选项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,
    故选:.
    【点睛】
    本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    5、B
    【分析】
    根据中心对称图形的概念求解.
    【详解】
    解:A、是中心对称图形,故本选项不合题意;
    B、不是中心对称图形,故本选项符合题意;
    C、是中心对称图形,故本选项不合题意;
    D、是中心对称图形,故本选项不合题意.
    故选:B.
    【点睛】
    本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
    6、A
    【分析】
    由菱形的性质可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.
    【详解】
    解:∵四边形ABCD是菱形,AC=6,BD=8,
    ∴OA=OC=3,OB=OD=4,AO⊥BO,
    在Rt△AOB中,由勾股定理得:,
    故选:A.
    【点睛】
    本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.
    7、B
    【分析】
    根据题意得到,然后根据菱形的判定方法求解即可.
    【详解】
    解:由题意可得:,
    ∴四边形是菱形.
    故选:B.
    【点睛】
    此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法.菱形的判定定理:①四条边都相等四边形是菱形;②一组邻边相等的平行四边形是菱形;③对角线垂直的平行四边形是菱形.
    8、B
    【分析】
    设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360°,即可求解.
    【详解】
    解:设BE与DF交于点M,BE与AC交于点N,

    ∵ ,
    ∴ ,
    ∵,
    ∴ .
    故选:B
    【点睛】
    本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.
    9、D
    【分析】
    一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可.
    【详解】
    A、既不是中心对称图形,也不是轴对称图形,故不符合题意;
    B、是轴对称图形,但不是中心对称图形,故不符合题意;
    C、是中心对称图形,但不是轴对称图形,故不符合题意;
    D、既是中心对称图形,也是轴对称图形,故符合题意.
    【点睛】
    本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键.
    10、C
    【分析】
    如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,则,,,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.
    【详解】
    解:如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,
    ∴,,,
    ∴△DEF的周长,
    同理可得:△GHI的周长,
    ∴第三次作中位线得到的三角形周长为,
    ∴第四次作中位线得到的三角形周长为
    ∴第三次作中位线得到的三角形周长为
    ∴这五个新三角形的周长之和为,
    故选C.

    【点睛】
    本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.
    二、填空题
    1、##
    【分析】
    根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.
    【详解】
    解:,,,

    ∴∠ABC=90°,
    ∵点D为AC的中点,
    ∴BD为AC边上的中线,
    ∴BD=AC,
    故答案为:
    【点睛】
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.
    2、
    【分析】
    根据多边形的内角和公式(n−2)•180°以及外角和定理列出方程,然后求解即可.
    【详解】
    解:设这个多边形的边数是n,
    根据题意得,(n−2)•180°=2×360°,
    解得n=6.
    答:这个多边形的边数是6.
    故答案为:6.
    【点睛】
    本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.
    3、6
    【分析】
    由题意直接由菱形的面积等于对角线乘积的一半进行计算即可.
    【详解】
    解:菱形的面积.
    故答案为:6.
    【点睛】
    本题考查菱形的性质,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.
    4、1
    【分析】
    (1)连接OA、OD,根据正方形的性质和全等三角形的判定证明△OAE≌△ODF,利用全等三角形的性质得出四边形EOFD的面积等于△AOD的面积即可求解;
    (2)根据全等三角形的性质证得△EOF为等腰直角三角形,则EF=OE,当OE⊥AD时OE最小,则EF最小,求解此时在OE即可解答.
    【详解】
    解:(1)连接OA、OD,
    ∵四边形ABCD是正方形,
    ∴OA=OD,∠AOD=90°,∠EAO=∠FDO=45°,
    ∴∠AOE+∠DOE=90°,
    ∵OE⊥OF,
    ∴∠DOF+∠DOE=90°,
    ∴∠AOE=∠DOF,
    在△OAE和△ODF中,

    ∴△OAE≌△ODF(ASA),
    ∴S△OAE=S△ODF,
    ∴S四边形EOFD = S△ODE+S△ODF= S△ODE+S△OAE= S△AOD= S正方形ABCD,
    ∵AD=2,
    ∴S四边形EOFD= ×4=1,
    故答案为:1;
    (2)∵△OAE≌△ODF,
    ∴OE=OF,
    ∴△EOF为等腰直角三角形,则EF=OE,
    当OE⊥AD时OE最小,即EF最小,
    ∵OA=OD,∠AOD=90°,
    ∴OE=AD=1,
    ∴EF的最小值,
    故答案为:.

    【点睛】
    本题考查正方形的性质、全等三角形的判定与性质、等角的余角相等、等腰直角三角形的判定与性质、垂线段最短,熟练掌握相关知识的联系与运用是解答的关键.
    5、八
    【分析】
    根据多边形的内角和公式求解即可.n边形的内角的和等于: (n大于等于3且n为整数).
    【详解】
    解:设该多边形的边数为n,
    根据题意,得,
    解得,
    ∴这个多边形为八边形,
    故答案为:八.
    【点睛】
    此题考查了多边形的内角和,解题的关键是熟练掌握多边形的内角和公式.
    三、解答题
    1、(1)(1,4);(2)45°;(3)见解析

    【分析】
    (1)过点A作AE⊥x轴于E,过点B作BF⊥x轴于F,证明△OAE≌△BOF得到OF=AE,BF=OE,再由点A的坐标为(-4,1),得到OF=AE=1,BF=OE=4,则点B的坐标为(1,4);
    (2)延长MP与AN交于H,证明△APH≌△BPM得到AH=BM,再由A点坐标为(-4,1),B点坐标为(1,4),得到AN=4,OM=4,BM=1,ON=1,则HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;
    (3)连接OP,AM,取BM中点G,连接GP,则GP是△ABM的中位线,AM∥GP,证明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,则PQ⊥PG,即PG⊥AM;
    【详解】
    解:(1)如图所示,过点A作AE⊥x轴于E,过点B作BF⊥x轴于F,
    ∴∠AEO=∠OFB=90°,
    ∴∠AOE+∠OAE=90°,
    又∵∠AOB=90°,
    ∴∠AOE+∠BOF=90°,
    ∴∠OAE=∠BOF,
    ∵AO=OB,
    ∴△OAE≌△BOF(AAS),
    ∴OF=AE,BF=OE,
    ∵点A的坐标为(-4,1),
    ∴OF=AE=1,BF=OE=4,
    ∴点B的坐标为(1,4);

    (2)如图所示,延长MP与AN交于H,
    ∵AH⊥y轴,BM⊥y轴,
    ∴BM∥AN,
    ∴∠MBP=∠HAP,∠AHP=∠BMP,
    ∵点P是AB的中点,
    ∴AP=BP,
    ∴△APH≌△BPM(AAS),
    ∴AH=BM,
    ∵A点坐标为(-4,1),B点坐标为(1,4),
    ∴AN=4,OM=4,BM=1,ON=1,
    ∴HN=AN-AH=AN-BM=3,MN=OM-ON=3,
    ∴HN=MN,
    ∴∠NHM=∠NMH=45°,即∠PMO=45°;

    (3)如图所示,连接OP,AM,取BM中点G,连接GP,
    ∴GP是△ABM的中位线,
    ∴AM∥GP,
    ∵Q是ON的中点,G是BM的中点,ON=BM=1,
    ∴,
    ∵P是AB中点,△AOB是等腰直角三角形,∠AOB=90°,
    ∴,∠OAB=∠OBA=45°,∠OPB=90°
    ∴∠PAO=∠POA=45°,
    ∴∠POB=45°,
    ∵∠NAO+∠NOA=90°,∠NOA+∠BON=90°,
    ∴∠NAO=∠BON,
    ∵∠OAB=∠POB=45°,
    ∴∠BAN+∠NAO=∠POQ+∠BON,即∠BAN=∠POQ,
    由(2)得∠GBP=∠BAN,
    ∴∠GBP=∠QOP,
    ∴△PQO≌△PGB(SAS),
    ∴∠OPQ=∠BPG,
    ∵∠OPQ+∠BPQ=90°,
    ∴∠BPG+∠BPQ=90°,即∠GPQ=90°,
    ∴PQ⊥PG,
    ∴PG⊥AM;

    【点睛】
    本题主要考查了坐标与图形,全等三角形的性质与判定,三角形中位线定理,等腰直角三角形的性质与判定等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
    2、(1);(2)y=S四边形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)当t=4或 或时,为等腰三角形,理由见解析.
    【分析】
    (1)利用平行四边形的对边相等AQ=BP建立方程求解即可;
    (2)先构造直角三角形,求出AE,再用梯形的面积公式即可得出结论;
    (3)利用面积关系求出t,即可求出DQ,进而判断出DQ=PQ,即可得出结论;
    (4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.
    【详解】
    解:(1)∵在平行四边形中,,,
    由运动知,AQ=16−t,BP=2t,
    ∵四边形ABPQ为平行四边形,
    ∴AQ=BP,
    ∴16−t=2t
    ∴t=,
    即:t=s时,四边形ABPQ是平行四边形;
    (2)过点A作AE⊥BC于E,如图,

    在Rt△ABE中,∠B=30°,AB=8,
    ∴AE=4,
    由运动知,BP=2t,DQ=t,
    ∵四边形ABCD是平行四边形,
    ∴AD=BC=16,
    ∴AQ=16−t,
    ∴y=S四边形ABPQ=(BP+AQ)•AE=(2t+16−t)×4=2t+32(0<t≤8);
    (3)由(2)知,AE=4,
    ∵BC=16,
    ∴S四边形ABCD=16×4=64,
    由(2)知,y=S四边形ABPQ=2t+32(0<t≤8),
    ∵四边形ABPQ的面积是四边形ABCD的面积的四分之三
    ∴2t+32=×64,
    ∴t=8;
    如图,


    当t=8时,点P和点C重合,DQ=8,
    ∵CD=AB=8,
    ∴DP=DQ,
    ∴∠DQC=∠DPQ,
    ∴∠D=∠B=30°,
    ∴∠DQP=75°;
    (4)①当AB=BP时,BP=8,
    即2t=8,t=4;
    ②当AP=BP时,如图,

    ∵∠B=30°,
    过P作PM垂直于AB,垂足为点M,
    ∴BM=4,,
    解得:BP=,
    ∴2t=,
    ∴t=
    ③当AB=AP时,同(2)的方法得,BP=,
    ∴2t=,
    ∴t=
    所以,当t=4或 或时,△ABP为等腰三角形.
    【点睛】
    此题是四边形综合题,主要考查了平行四边形的性质,含30°的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQ=BP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题.
    3、(1)40°;(2);(3)若AG∥BH,则α+β=180°,理由见解析;(4),图见解析.
    【分析】
    (1)利用四边形内角和定理得到∠DAB+∠ABC=360°-120°-140°=100°.再利用三角形的外角性质得到∠F=∠FBE-∠FAB,通过计算即可求解;
    (2)同(1),通过计算即可求解;
    (3)由AG∥BH,推出∠GAB=∠HBE.再推出AD∥BC,再利用平行线的性质即可得到答案;
    (4)利用四边形内角和定理得到∠DAB+∠ABC=360°-∠D-BCD=360°-α-β.再利用三角形的外角性质得到∠F=∠MAB-∠ABF,通过计算即可求解.
    【详解】
    解:(1)∵BF平分∠CBE,AF平分∠DAB,
    ∴∠FBE=∠CBE,∠FAB=∠DAB.
    ∵∠D+∠DCB+∠DAB+∠ABC=360°,
    ∴∠DAB+∠ABC=360°-∠D-∠DCB
    =360°-120°-140°=100°.
    又∵∠F+∠FAB=∠FBE,
    ∴∠F=∠FBE-∠FAB=∠CBE−∠DAB
    = (∠CBE−∠DAB)
    = (180°−∠ABC−∠DAB)
    =×(180°−100°)
    =40°.
    故答案为:40°;
    (2)由(1)得:∠AFB= (180°−∠ABC−∠DAB),
    ∠DAB+∠ABC=360°-∠D-∠DCB.
    ∴∠AFB= (180°−360°+∠D+∠DCB)
    =∠D+∠DCB−90°
    =α+β−90°.
    故答案为:;
    (3)若AG∥BH,则α+β=180°.理由如下:
    若AG∥BH,则∠GAB=∠HBE.
    ∵AG平分∠DAB,BH平分∠CBE,
    ∴∠DAB=2∠GAB,∠CBE=2∠HBE,
    ∴∠DAB=∠CBE,
    ∴AD∥BC,
    ∴∠DAB+∠DCB=α+β=180°;
    (4)如图:

    ∵AM平分∠DAB,BN平分∠CBE,
    ∴∠BAM=∠DAB,∠NBE=∠CBE,
    ∵∠D+∠DAB+∠ABC+∠BCD=360°,
    ∴∠DAB+∠ABC=360°-∠D-BCD=360°-α-β,
    ∴∠DAB+180°-∠CBE=360°-α-β,
    ∴∠DAB-∠CBE=180°-α-β,
    ∵∠ABF与∠NBE是对顶角,
    ∴∠ABF=∠NBE,
    又∵∠F+∠ABF=∠MAB,
    ∴∠F=∠MAB-∠ABF,
    ∴∠F=∠DAB−∠NBE
    =∠DAB−∠CBE
    = (∠DAB−∠CBE)
    = (180°−α−β)
    =90°-α−β.
    【点睛】
    本题主要考查了三角形的外角性质、四边形内角和定理、平行线的性质、角平分线的定义.借助转化的数学思想,将未知条件转化为已知条件解题.
    4、见解析
    【分析】
    利用矩形性质以及等边对等角,证明,最后利用边角边即可证明.
    【详解】
    解:四边形ABCD是矩形,
    ,,



    在和中,


    【点睛】
    本题主要是考查了矩形的性质、等边对等角以及全等三角形的判定,熟练地利用矩形性质以及等边对等角,求证边和角相等,进而证明三角形全等,这是解决该题的关键.
    5、2598元
    【分析】
    根据菱形的性质,先求出菱形的一条对角线,由勾股定理求出另一条对角线的长,由三角形的中位线定理,求出矩形的两条边,再求出矩形的面积,最后求得投资资金.
    【详解】
    连接BD,AD相交于点O,如图:

    ∵四边形ABCD是一个菱形,
    ∴AC⊥BD,
    ∵∠ABC=120°,
    ∴∠A=60°,
    ∴△ABD为等边三角形,
    ∵菱形的周长为40m,
    ∴菱形的边长为10m,
    ∴BD=10m,BO=5m,
    ∴在Rt△AOB中,m,
    ∴AC=2OA=m,
    ∵E、F、G、H分别是AB、BC、CD、DA的中点,
    ∴EH=BD =5m,EF=AC=5m,
    ∴S矩形=5×5=50m2,
    则需投资资金50×30=1500×1.732≈2598元
    【点睛】
    本题考查了二次根式的应用,勾股定理,菱形的性质,等边三角形的判定与性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质与定理是解题的关键.

    相关试卷

    2021学年第十五章 四边形综合与测试随堂练习题:

    这是一份2021学年第十五章 四边形综合与测试随堂练习题,共26页。

    北京课改版第十五章 四边形综合与测试课后测评:

    这是一份北京课改版第十五章 四边形综合与测试课后测评,共25页。试卷主要包含了下列图形中不是中心对称图形的是等内容,欢迎下载使用。

    北京课改版八年级下册第十五章 四边形综合与测试课时训练:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试课时训练,共29页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map