|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年最新强化训练京改版八年级数学下册第十五章四边形专题攻克试题(含详细解析)
    立即下载
    加入资料篮
    2022年最新强化训练京改版八年级数学下册第十五章四边形专题攻克试题(含详细解析)01
    2022年最新强化训练京改版八年级数学下册第十五章四边形专题攻克试题(含详细解析)02
    2022年最新强化训练京改版八年级数学下册第十五章四边形专题攻克试题(含详细解析)03
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十五章 四边形综合与测试综合训练题

    展开
    这是一份北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共33页。

    京改版八年级数学下册第十五章四边形专题攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )

    A.梯形 B.菱形 C.矩形 D.正方形
    2、如图,四边形ABCD中,∠A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )

    A. B. C. D.
    3、将一张长方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为、,若=10°,则∠EAF的度数为(  )

    A.40° B.45° C.50° D.55°
    4、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )
    A.任意四边形 B.平行四边形 C.对角线相等的四边形 D.对角线垂直的四边形
    5、如图,在中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD的长是( )

    A.20 B.10 C.5 D.2
    6、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )
    A.5 B.4 C.3 D.2
    7、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )
    A. B.
    C. D.
    8、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统.以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )

    A.可回收物 B.有害垃圾 C.厨余垃圾 D.其他垃圾
    9、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB=9,AD,则四边形CDFE的面积是(  )

    A. B. C. D.54
    10、如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E,若∠1=40°,则∠2的度数为(  )

    A.25° B.20° C.15° D.10°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,将长方形ABCD按图中方式折叠,其中EF、EC为折痕,折叠后、、E在一直线上,已知∠BEC=65°,那么∠AEF的度数是_____.

    2、如图,矩形的对角线、相交于点,分别以点、为圆心,长为半径画弧,分别交、于点、.若,,则图中阴影部分的面积为_______.(结果保留)

    3、如图,矩形ABCD中,AC、BD相交于点O且AC=12,如果∠AOD=60°,则DC=__.

    4、如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④点E运动的路程是2,其中正确结论的序号为 _____.


    5、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB=8,AD=16,BE=4,则MC的长为________.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图1,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B的另一条直线交x轴正半轴于点C.

    (1)写出C点坐标 ;
    (2)若M为线段BC上一点,且满足S△AMB = S△AOB,请求出点M的坐标;
    (3)如图2,设点F为线段AB中点,点G为y轴正半轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求出点G的坐标.
    2、在菱形ABCD中,∠ABC=60°,P是直线BD上一动点,以AP为边向右侧作等边APE(A,P,E按逆时针排列),点E的位置随点P的位置变化而变化.
    (1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是 ,BC与CE的位置关系是 ;
    (2)如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;
    (3)当点P在直线BD上时,其他条件不变,连接BE.若AB=2,BE=2,请直接写出APE的面积.

    3、如图,四边形ABCD是平行四边形,∠BAC=90°.
    (1)尺规作图:在BC上截取CE,使CE=CD,连接DE与AC交于点F,过点F作线段AD的垂线交AD于点M;(不写作法,保留作图痕迹)
    (2)在(1)的条件下,猜想线段FM和CF的数量关系,并证明你的结论.

    4、如图,矩形ABCD中,,,过对角线BD中点O的直线分别交AB,CD边于点E,F.
    (1)求证:四边形BEDF是平行四边形.
    (2)当四边形BEDF是菱形时,求EF的长.

    5、(1)如图a,矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.

    (2)如图b,如果题目中的矩形变为菱形,结论应变为什么?说明理由.
    (3)如图c,如果题目中的矩形变为正方形,结论又应变为什么?说明理由.

    -参考答案-
    一、单选题
    1、B
    【分析】
    根据题意得到,然后根据菱形的判定方法求解即可.
    【详解】
    解:由题意可得:,
    ∴四边形是菱形.
    故选:B.
    【点睛】
    此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法.菱形的判定定理:①四条边都相等四边形是菱形;②一组邻边相等的平行四边形是菱形;③对角线垂直的平行四边形是菱形.
    2、A
    【分析】
    根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值. 连接DB,过点D作DH⊥AB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;
    【详解】
    解:∵ED=EM,MF=FN,
    ∴EF=DN,
    ∴DN最大时,EF最大,
    ∴N与B重合时DN=DB最大,
    在Rt△ADH中, ∵∠A=60°

    ∴AH=2×=1,DH=,
    ∴BH=AB﹣AH=3﹣1=2,
    ∴DB=,
    ∴EFmax=DB=,
    ∴EF的最大值为.

    故选A
    【点睛】
    本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键.
    3、A
    【分析】
    可以设∠EAD′=α,∠FAB′=β,根据折叠可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根据四边形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.
    【详解】
    解:设∠EAD′=α,∠FAB′=β,
    根据折叠性质可知:
    ∠DAF=∠D′AF,∠BAE=∠B′AE,
    ∵∠B′AD′=10°,
    ∴∠DAF=10°+β,
    ∠BAE=10°+α,

    ∵四边形ABCD是矩形
    ∴∠DAB=90°,
    ∴10°+β+β+10°+10°+α+α=90°,
    ∴α+β=30°,
    ∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,
    =10°+α+β,
    =10°+30°,
    =40°.
    则∠EAF的度数为40°.
    故选:A.
    【点睛】
    本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.
    4、B
    【分析】
    根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状.
    【详解】
    解:,



    ∴a=b,c=d,
    ∵四边形四条边长分别是a,b,c,d,其中a,b为对边,
    ∴c、d是对边,
    ∴该四边形是平行四边形,
    故选:B.
    【点睛】
    此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键.
    5、C
    【分析】
    由直角三角形的性质知:斜边上的中线等于斜边的一半,即可求出CD的长.
    【详解】
    解:∵在中,,AB=10,CD是AB边上的中线

    故选:C.
    【点睛】
    本题考查了直角三角形斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.
    6、A
    【分析】
    利用直角三角形斜边的中线的性质可得答案.
    【详解】
    解:∵∠C=90°,若D为斜边AB上的中点,
    ∴CD=AB,
    ∵AB的长为10,
    ∴DC=5,
    故选:A.
    【点睛】
    此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.
    7、C
    【分析】
    利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.
    【详解】
    解:A、不是中心对称图形,故A错误.
    B、不是中心对称图形,故B错误.
    C、是中心对称图形,故C正确.
    D、不是中心对称图形,故D错误.
    故选:C.
    【点睛】
    本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.
    8、B
    【分析】
    由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即可得出答案.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;
    B、既是轴对称图形,也是中心对称图形,故此选项符合题意;
    C、是轴对称图形,不是中心对称图形,故此选项不合题意;
    D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;
    故选:B.
    【点睛】
    本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    9、C
    【分析】
    过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案.
    【详解】

    如图,过点F作,分别交于M、N,
    ∵四边形ABCD是矩形,
    ∴,,
    ∵点E是BC的中点,
    ∴,
    ∵F是AE中点,
    ∴,
    ∴.
    故选:C.
    【点睛】
    本题考查矩形的性质与三角形的面积公式,掌握是解题的关键.
    10、D
    【分析】
    根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴∠ABC=90°,CD∥AB,
    ∴∠ABD=∠1=40°,
    ∴∠DBC=∠ABC-∠ABD=50°,
    由折叠可得∠DB C′=∠DBC=50°,
    ∴∠2=∠DB C′−∠DBA=50°−40°=10°,
    故选D.
    【点睛】
    本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.
    二、填空题
    1、25°
    【分析】
    利用翻折变换的性质即可解决.
    【详解】
    解:由折叠可知,∠EF=∠AEF,∠EC=∠BEC=65°,
    ∵∠EF+∠AEF+∠EC+∠BEC=180°,
    ∴∠EF+∠AEF=50°,
    ∴∠AEF=25°,
    故答案为:25°.
    【点睛】
    本题考查了折叠的性质,熟练掌握折叠的性质是解题的关键.
    2、##
    【分析】
    由图可知,阴影部分的面积是扇形AEO和扇形CFO的面积之和.
    【详解】
    解:∵四边形是矩形,
    ∴,,,
    ∴,,
    ∴图中阴影部分的面积为:.
    故答案为:.
    【点睛】
    本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.
    3、
    【分析】
    根据矩形的对角线互相平分且相等可得OA=OD,然后判断出△AOD是等边三角形,再根据勾股定理解答即可.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴OA=OD=AC=×12=6,∠ADC=90°,
    ∵∠AOD=60°,
    ∴△AOD是等边三角形,
    ∴AD=OA=6,
    ∴.
    故答案为:.
    【点睛】
    本题考查了矩形的性质和勾股定理以及等边三角形的判定,解题关键是根据矩形的性质得出△AOD是等边三角形.
    4、①②③④
    【分析】
    ①根据∠DAC=60°,OD=OA,得出△OAD为等边三角形,再由△DFE为等边三角形,得∠DOA=∠DEF=60°,再利用角的等量代换,即可得出结论①正确;
    ②连接OE,利用SAS证明△DAF≌△DOE,再证明△ODE≌△OCE,即可得出结论②正确;
    ③通过等量代换即可得出结论③正确;
    ④延长OE至,使=OD,连接,通过△DAF≌△DOE,∠DOE=60°,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段运动到,从而得出结论④正确;
    【详解】
    解:①设与的交点为如图所示:

    ∵∠DAC=60°,OD=OA,
    ∴△OAD为等边三角形,
    ∴∠DOA=∠DAO=∠ADO =60°,
    ∵△DFE为等边三角形,
    ∴∠DEF=60°,
    ∴∠DOA=∠DEF=60°,
    ∴,

    故结论①正确;
    ②如图,连接OE,

    在△DAF和△DOE中,

    ∴△DAF≌△DOE(SAS),
    ∴∠DOE=∠DAF=60°,
    ∵∠COD=180°﹣∠AOD=120°,
    ∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,
    ∴∠COE=∠DOE,
    在△ODE和△OCE中,

    ∴△ODE≌△OCE(SAS),
    ∴ED=EC,∠OCE=∠ODE,
    故结论②正确;
    ③∵∠ODE=∠ADF,
    ∴∠ADF=∠OCE,即∠ADF=∠ECF,
    故结论③正确;
    ④如图,延长OE至,使=OD,连接,


    ∵△DAF≌△DOE,∠DOE=60°,
    ∴点F在线段AO上从点A至点O运动时,点E从点O沿线段运动到,


    设,则
    ∴在中,

    解得:
    ∴=OD=AD=,
    ∴点E运动的路程是,
    故结论④正确;
    故答案为:①②③④.
    【点睛】
    本题主要考查了几何综合,其中涉及到了等边三角形判定及性质,相似三角形的判定及性质,全等三角形的性质及判定,三角函数的比值关系,矩形的性质等知识点,熟悉掌握几何图形的性质合理做出辅助线是解题的关键.
    5、10
    【分析】
    过E作EF⊥AD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出△ANM≌△ENM,可得AM=EM,根据矩形ABCD,得出∠B=∠A=∠D=90°,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可.
    【详解】
    解:过E作EF⊥AD于F,
    ∵矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,
    ∴△ANM≌△ENM,
    ∴AM=EM,
    ∵矩形ABCD,
    ∴∠B=∠A=∠D=90°,
    ∵FE⊥AD,
    ∴∠AFE=∠B=∠A=90°,
    ∴四边形ABEF为矩形,
    ∴AF=BE=4,FE=AB=8,
    设AM=EM=m,FM=m-4

    在Rt△FEM中,根据勾股定理,即,
    解得m=10,
    ∴MD=AD-AM=16-10=6,
    在Rt△MDC中,
    ∴MC=.
    故答案为10.
    【点睛】
    本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键.
    三、解答题
    1、(1)点C(6,0);(2)点;(3)满足条件的点G坐标为或.
    【分析】
    (1)直接利用直线,令y=0,解方程即可;
    (2)结合图形,由S△AMB=S△AOB 分析出直线OM平行于直线AB,再利用两直线相交建立方程组,解方程组求得交点M的坐标;
    (3)分两种情形:①当n>4时,如图2-1中,点Q落在BC上时,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.求出Q(n-4,n-2).②当n<4时,如图2-2中,同法可得Q(4-n,n+2),代入直线BC的解析式解方程即可解决问题.
    【详解】
    解:(1)∵直线交x轴正半轴于点C.
    ∴当y=0时,,
    解得x=6
    ∴点C(6,0)
    故答案为(6,0);
    (2)连接OM并双向延长,

    ∵S△AMB=S△AOB ,
    ∴点O到AB与点M到AB的距离相等,
    ∴直线OM平行于直线AB,
    ∵AB解析式为y=2x+8,
    故设直线OM解析式为:,
    将直线OM的解析式与直线BC的解析式联立得方程组得:

    解得:
    故点;
    (3)∵直线y=2x+8与x轴交于点A,与y轴交于点B,
    ∴令y=0,2x+8=0,
    解得x=-4,
    ∴A(-4,0),
    令x=0,则y=8
    ∴B(0,8),
    ∵点F为AB中点,
    点F横坐标为,纵坐标为
    ∴F(-2,4),
    设G(0,n),
    ①当n>4时,如图2-1中,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.

    ∵四边形FGQP是正方形,
    ∴FG=QG,∠FGQ=90°,
    ∴∠MGF+∠NGQ=180°-∠FGQ=180°-90°=90°,
    ∵FM⊥MN,QN⊥MN,
    ∴∠M=∠N=90°,
    ∴∠MFG+∠MGF=90°,
    ∴∠MFG=∠NGQ,
    在△FMG和△GNQ中,

    ∴△FMG≌△GNQ,
    ∴MG=NQ=2,FM=GN=n-4,
    ∴Q(n-4,n-2),
    ∵点Q在直线上,
    ∴,
    ∴,
    ∴.
    ②当n<4时,如图2-2中,
    点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.
    ∵四边形FGQP是正方形,
    ∴FG=QG,∠FGQ=90°,
    ∴∠MGF+∠NGQ=180°-∠FGQ=180°-90°=90°,
    ∵FM⊥MN,QN⊥MN,
    ∴∠M=∠N=90°,
    ∴∠MFG+∠MGF=90°,
    ∴∠MFG=∠NGQ,
    在△FMG和△GNQ中,

    ∴△FMG≌△GNQ,
    ∴MG=NQ=2,FM=GN= 4-n,
    ∴Q(4- n, n+2),
    ∵点Q在直线上,
    ∴,

    ∴n=-2,
    ∴.
    综上所述,满足条件的点G坐标为或.
    【点睛】
    本题属于一次函数综合题,考查了一次函数与坐标轴的交点,平行线性质,两直线联立解方程组,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
    2、(1)BP=CE,CE⊥BC;(2)仍然成立,见解析;(3)31
    【分析】
    (1)连接AC,根据菱形的性质和等边三角形的性质证明△BAP≌△CAE即可证得结论;
    (2)(1)中的结论成立,用(1)中的方法证明△BAP≌△CAE即可;
    (3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由∠BCE=90°,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论.
    【详解】
    解:(1)如图1,连接AC,延长CE交AD于点H,

    ∵四边形ABCD是菱形,
    ∴AB=BC,
    ∵∠ABC=60°,
    ∴△ABC是等边三角形,
    ∴AB=AC,∠BAC=60°;
    ∵△APE是等边三角形,
    ∴AP=AE,∠PAE=60°,
    ∴∠BAP=∠CAE=60°﹣∠PAC,
    ∴△BAP≌△CAE(SAS),
    ∴BP=CE;
    ∵四边形ABCD是菱形,
    ∴∠ABP=∠ABC=30°,
    ∴∠ABP=∠ACE=30°,
    ∵∠ACB=60°,
    ∴∠BCE=60°+30°=90°,
    ∴CE⊥BC;
    故答案为:BP=CE,CE⊥BC;
    (2)(1)中的结论:BP=CE,CE⊥AD 仍然成立,理由如下:
    如图2中,连接AC,设CE与AD交于H,

    ∵菱形ABCD,∠ABC=60°,
    ∴△ABC和△ACD都是等边三角形,
    ∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,
    ∵△APE是等边三角形,
    ∴AP=AE,∠PAE=60°,
    ∴∠CAE=60°+60°+∠DAP=120°+∠DAP,
    ∴∠BAP=∠CAE,
    ∴△ABP≌△ACE(SAS),
    ∴BP=CE,∠ACE=∠ABD=30°,
    ∴∠DCE=30°,
    ∵∠ADC=60°,
    ∴∠DCE+∠ADC=90°,
    ∴∠CHD=90°,
    ∴CE⊥AD;
    ∴(1)中的结论:BP=CE,CE⊥AD 仍然成立;
    (3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EF⊥AP于F,

    ∵四边形ABCD是菱形,
    ∴AC⊥BD BD平分∠ABC,
    ∵∠ABC=60°,AB=2,
    ∴∠ABO=30°,
    ∴AO=AB=,OB=AO=3,
    ∴BD=6,
    由(2)知CE⊥AD,
    ∵AD∥BC,
    ∴CE⊥BC,
    ∵BE=2,BC=AB=2,
    ∴CE==8,
    由(2)知BP=CE=8,
    ∴DP=2,
    ∴OP=5,
    ∴AP===2,
    ∵△APE是等边三角形,
    ∴S△AEP=×(2)2=7,
    如图4中,当点P在DB的延长线上时,同法可得AP===2,

    ∴S△AEP=×(2)2=31,
    【点睛】
    此题是四边形的综合题,重点考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来,此题难度较大,属于考试压轴题.
    3、(1)图形见解析;(2),证明见解析
    【分析】
    (1)以C为圆心CD长为半径画弧于BC交点即为E;连DE与AC交点即为F;过F作AD的垂直平分线与AD交点即为M;
    (2)证明DF平分,再利用角平分线的性质判定即可.
    【详解】
    (1)图形如下:

    (2),证明如下:
    由(1)可得:,CE=CD

    ∵四边形ABCD是平行四边形
    ∴AD∥BC,AB∥CD
    ∴,

    即DF平分
    ∵∠BAC=90°


    【点睛】
    本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定与性质.
    4、(1)证明见解析;(2)
    【分析】
    (1)由题意知,,通过得到,证明四边形BEDF平行四边形.
    (2)四边形BEDF为菱形,,;设,;在中用勾股定理,解出的长,在中用勾股定理,得到的长,由得到的值.
    【详解】
    (1)证明:∵四边形ABCD是矩形,O是BD的中点
    ∴,

    在和中

    ∴(ASA)

    ∴四边形BEDF是平行四边形.
    (2)解:∵四边形BEDF为菱形,
    ∴,
    又∵,
    ∴,
    设,则
    在中,

    在中,
    ∴.
    【点睛】
    本题考察了平行四边形的判定,三角形全等,菱形的性质,勾股定理.解题的关键与难点在于对平行四边形的性质的灵活运用.
    5、(1)四边形CODP是菱形,理由见解析;(2)四边形CODP是矩形,理由见解析;(3)四边形CODP是正方形,理由见解析
    【分析】
    (1)先证明四边形CODP是平行四边形,再由矩形的性质可得OD=OC,即可证明平行四边形OCDP是菱形;
    (2)先证明四边形CODP是平行四边形,再由菱形的性质可得∠DOC=90°,即可证明平行四边形OCDP是矩形;
    (3)先证明四边形CODP是平行四边形,再由正方形的性质可得BD⊥AC,DO=OC,即可证明平行四边形OCDP是正方形;
    【详解】
    解:(1)四边形CODP是菱形,理由如下:
    ∵DP∥OC,且DP=OC,
    ∴四边形CODP是平行四边形,
    又∵四边形ABCD是矩形,
    ∴OD=OC,
    ∴平行四边形OCDP是菱形;
    (2)四边形CODP是矩形,理由如下:
    ∵DP∥OC,且DP=OC,
    ∴四边形CODP是平行四边形,
    又∵四边形ABCD是菱形,
    ∴BD⊥AC,
    ∴∠DOC=90°,
    ∴平行四边形OCDP是矩形;
    (3)四边形CODP是正方形,理由如下:
    ∵DP∥OC,且DP=OC,
    ∴四边形CODP是平行四边形,
    又∵四边形ABCD是正方形,
    ∴BD⊥AC,DO=OC,
    ∴∠DOC=90°,平行四边形CODP是菱形,
    ∴菱形OCDP是正方形.
    【点睛】
    本题主要考查了矩形的性质与判定,菱形的性质与判定,正方形的性质与判定,解题的关键在于能够熟练掌握特殊平行四边形的性质与判定条件.

    相关试卷

    北京课改版八年级下册第十五章 四边形综合与测试综合训练题: 这是一份北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共29页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学第十五章 四边形综合与测试同步测试题: 这是一份初中数学第十五章 四边形综合与测试同步测试题,共22页。

    数学八年级下册第十五章 四边形综合与测试同步练习题: 这是一份数学八年级下册第十五章 四边形综合与测试同步练习题,共24页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map