终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷京改版八年级数学下册第十五章四边形定向训练试卷(含答案解析)

    立即下载
    加入资料篮
    精品试卷京改版八年级数学下册第十五章四边形定向训练试卷(含答案解析)第1页
    精品试卷京改版八年级数学下册第十五章四边形定向训练试卷(含答案解析)第2页
    精品试卷京改版八年级数学下册第十五章四边形定向训练试卷(含答案解析)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学第十五章 四边形综合与测试课后练习题

    展开

    这是一份数学第十五章 四边形综合与测试课后练习题,共26页。
    京改版八年级数学下册第十五章四边形定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、已知,四边形ABCD的对角线ACBD相交于点O.设有以下条件:①ABAD;②ACBD;③AOCOBODO;④四边形ABCD是矩形;⑤四边形ABCD是菱形;⑥四边形ABCD是正方形.那么,下列推理不成立的是(  )A.①④⇒⑥ B.①③⇒⑤ C.①②⇒⑥ D.②③⇒④2、下列命题是真命题的是(    A.五边形的内角和是720° B.三角形的任意两边之和大于第三边C.内错角相等 D.对角线互相垂直的四边形是菱形3、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形.该小正方形的序号是(  )A. B. C. D.4、如图,将矩形纸片ABCD沿BD折叠,得到△BCDCDAB交于点E,若∠1=40°,则∠2的度数为(  )A.25° B.20° C.15° D.10°5、下图是文易同学答的试卷,文易同学应得(    A.40分 B.60分 C.80分 D.100分6、下列图案中既是轴对称图形又是中心对称图形的是(    A. B. C. D.7、下列各APP标识的图案是中心对称图形的是(  )A. B. C. D.8、已知正多边形的一个外角等于45°,则该正多边形的内角和为(  )A.135° B.360° C.1080° D.1440°9、下列图形中,既是轴对称图形,又是中心对称图形的是(    A. B.C. D.10、四边形四条边长分别是abcd,其中ab为对边,且满足,则这个四边形是(    A.任意四边形 B.平行四边形 C.对角线相等的四边形 D.对角线垂直的四边形第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,对角线ACBD相交于点O,点EF分别是AOAD的中点,若AB=6cm,BC=8cm,则EF=_____cm.2、若点P(m﹣1,5)与点Q(﹣3,n)关于原点成中心对称,则mn的值是___.3、点DE分别是△ABCABAC的中点,已知BC=12,则DE=_____4、已知正方形ABCD的一条对角线长为2,则它的面积是______.5、如图,在平行四边形ABCD中,EF分别在CDBC的延长线上,______. 三、解答题(5小题,每小题10分,共计50分)1、如图:在中,,点的中点,点为直线上的动点(不与点重合),连接,以为边在的上方作等边,连接(1)是________三角形;(2)如图1,当点在边上时,运用(1)中的结论证明(3)如图2,当点的延长线上时,(2)中的结论是否依然成立?若成立,请加以证明,若不成立,请说明理由.2、(教材重现)如图是数学教材第135页的部分截图.在多边形中,三角形是最基本的图形.如图4.4.5所示,每一个多边形都可以分割成若干个三角形.数一数每个多边形中三角形的个数,你能发现什么规律?在多边形中,连接不相邻的两个顶点,所得到的线段称为多边形的对角线.(问题思考)结合如图思考,从多边形的一个顶点出发,可以得到的对角线的数量,并填写表:多边形边数……十二……n从一个顶点出发,得到对角线的数量1条          ……     ……     (问题探究)n边形有n个顶点,每个顶点分别连接对角线后,每条对角线重复连接了一次,由此可推导出,n边形共有      对角线(用含有n的代数式表示).(问题拓展)(1)已知平面上4个点,任意三点不在同一直线上,一共可以连接      条线段.(2)已知平面上共有15个点,任意三点不在同一直线上,一共可以连接      条线段.(3)已知平面上共有x个点,任意三点不在同一直线上,一共可以连接      条线段(用含有x的代数式表示,不必化简).3、在中,,斜边,过点,以AB为边作菱形ABEF,若,求的面积.4、△ABC和△GEF都是等边三角形.问题背景:如图1,点E与点C重合且BCG三点共线.此时△BFC可以看作是△AGC经过平移、轴对称或旋转得到.请直接写出得到△BFC的过程.迁移应用:如图2,点EAC边上一点(不与点AC重合),点F为△ABC中线CD上一点,延长GFBC于点H,求证:联系拓展:如图3,AB=12,点DE分别为ABAC的中点,M为线段BD上靠近点B的三等分点,点F在射线DC上运动(EFG三点按顺时针排列).当最小时,则△MDG的面积为_______.5、如图,已知△ACB中,∠ACB=90°,EAB的中点,连接EC,过点AADEC,过点CCDEAADCD交于点D(1)求证:四边形ADCE是菱形;(2)若AB=8,∠DAE=60°,则△ACB的面积为        (直接填空). -参考答案-一、单选题1、C【分析】根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可.【详解】解:A、①④可以说明,一组邻边相等的矩形是正方形,故A正确.B、③可以说明四边形是平行四边形,再由①,一组临边相等的平行四边形是菱形,故B正确.C、①②,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误.D、③可以说明四边形是平行四边形,再由②可得:对角线相等的平行四边形为矩形,故D正确.故选:C.【点睛】本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键.2、B【分析】利用多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定分别判断后即可确定正确的选项.【详解】解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;D、对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定等知识,难度不大.3、B【分析】利用中心对称图形的定义判断即可.【详解】解:根据中心对称图形的定义可知,②满足条件.故选:【点睛】本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键.4、D【分析】根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,CDAB
    ∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,
    由折叠可得∠DB C′=∠DBC=50°,
    ∴∠2=∠DB C′−∠DBA=50°−40°=10°,
    故选D.【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.5、B【分析】分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.【详解】解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,∴文易同学答对3道题,得60分,故选:B.【点睛】本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键6、B【详解】A.是轴对称图形,不是中心对称图形,故不符合题意;B. 既是轴对称图形,又是中心对称图形,故符合题意;C.是轴对称图形,不是中心对称图形,故不符合题意;D.既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.7、C【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】A、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;B、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;C、图形关于中心旋转180°能完全重合,所以是中心对称图形,故本选项符合题意;D、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8、C【分析】先利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.【详解】解: 正多边形的一个外角等于45°, 这个正多边形的边数为: 这个多边形的内角和为: 故选C【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.9、B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意;故选:B.【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.10、B【分析】根据完全平方公式分解因式得到a=bc=d,利用边的位置关系得到该四边形的形状.【详解】解:a=bc=d∵四边形四条边长分别是abcd,其中ab为对边,∴c、d是对边,∴该四边形是平行四边形,故选:B【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键.二、填空题1、##【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=ACBO=OD,求出BDOD,根据三角形中位线求出即可.【详解】解:∵四边形ABCD是矩形, ∴∠ABC=90°,BD=ACBO=ODAB=6cmBC=8cm∴由勾股定理得:(cm), DO=5cm, ∵点EF分别是AOAD的中点, EF=OD=2.5cm故答案为:2.5.【点睛】本题考查了矩形的性质的应用,勾股定理,三角形中位线的应用,解本题的关键是求出OD长及证明EF=OD2、9【分析】根据关于原点对称点的坐标特征求出的值,再代入计算即可.【详解】解:与点关于原点成中心对称,故答案为:9.【点睛】本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即纵坐标互为相反数,横坐标也互为相反数.3、6【分析】根据三角形的中位线等于第三边的一半进行计算即可.【详解】解:∵DE分别是△ABCABAC的中点,DE是△ABC的中位线,BC=12,DE=BC=6,故答案为6.【点睛】本题主要考查了三角形中位线定理,熟知三角形中位线定理是解题的关键.4、6【分析】正方形的面积:边长的平方或两条对角线之积的一半,根据公式直接计算即可.【详解】解: 正方形ABCD的一条对角线长为2 故答案为:【点睛】本题考查的是正方形的性质,掌握“正方形的面积等于两条对角线之积的一半”是解题的关键.5、8【分析】证明四边形ABDE是平行四边形,得到DE=CD=, 过点EEHBFH,证得CH=EH,利用勾股定理求出EH,再根据30度角的性质求出EF.【详解】解:∵四边形ABCD是平行四边形,AB=CD∴四边形ABDE是平行四边形,DE=CD=过点EEHBFH∴∠ECH=CH=EHCH=EH=4,∵∠EHF=90°,EF=2EH=8,故答案为:8.【点睛】此题考查了平行四边形的判定及性质,勾股定理,直角三角形30度角的性质,熟记各知识点并应用解决问题是解题的关键.三、解答题1、(1)等边;(2)见解析;(3)成立,理由见解析【分析】(1)根据含30度角的直角三角形的性质,直角三角形斜边上的中线等于斜边的一半可证明,即可证明△OBC是等边三角形;
    (2)先证明,即可利用SAS证明,得到(3)先证明,即可利用SAS证明,得到【详解】(1)∵∠ACB=90°,∠A=30°,OAB的中点,∴△OBC是等边三角形,故答案为:等边;(2)由(1)可知,是等边三角形,,即(3)成立,证明:由(1)可知,是等边三角形,,即【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,熟练掌握等边三角形的性质与判定条件是解题的关键.2、规律为:多边形的边数减去2,就是多边形中的三角形的个数; 2条,3条,9条,条;条;(1)6;(2)105;(3)【分析】通过观察多边形边数与其分割的三角形个数,即可发现规律利用规律,多边形的边数一个顶点出发的对角线数,直接填写表格即可先求出所有顶点得到的对角线之和,最后除以2即可得到边形的对角线条数(1)根据题意,四边形一个顶点可以得到一条,四个点共4条,再去除一半,加上四个点单独连接的4条线段,即可得到答案.(2)根据规律可以发现:十五边形的每个点可以得到12条,15点有180条,去掉一半,加上15个点组成的十五边形的的15条边,即可得到答案.(3)通过上述两小题,即可以找到对应的规律,利用规律进行求解即可.【详解】由图可以直接发现:多边形的边数与其分割的三角形个数相差2,故规律为:多边形的边数减去2,就是多边形中的三角形的个数.利用上图规律,便可以知道从五边形的一个顶点出发,得到2条对角线;六边形的一个顶点出发,得到3条对角线;十二边形的一个顶点出发,得到9条对角线;边形的一个顶点出发,得到条对角线.边形的一个顶点可以得到条对角线,故个顶点共有,由于每条对角线重复连接了一次,故n边形共有条对角线(1)解:有四个点可以组成四边形,每个点可以得到1条对角线,四个点共4条,每条对角线重复连接了一次,对角线条数为2,四边形的边数为4,一共可以连接2+4=6条线段.(2)解:有15个点可以组成十五边形,每个点可以得到12条对角线,四个点共180条,每条对角线重复连接了一次,对角线条数为90,四边形的边数为15,一共可以连接90+15=105条线段.(3)解:由前面题的规律可知:有个点可以组成边形,每个点可以得到条对角线,四个点共条,每条对角线重复连接了一次,对角线条数为四边形的边数为一共可以连接条线段.【点睛】本题主要是考察了图形类的规律问题以及列代数式,根据题意,找到对角线与多边形的边数关系是解决本题的关键,另外,注意本题是问的点与点之间可连接的线段数,不要只算对角线的条数.3、4【分析】分别过点ECEHCG垂直AB,垂足为点HG,则CG是斜边AB上的高;在菱形ABEF中, 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30°角的直角三角形的性质求出EH,问题即可解答。【详解】解:如图,分别过垂足为点 四边形ABEF为菱形,中,根据题意,,根据平行线间的距离处处相等, .答:的面积为4.【点睛】本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键.4、(1)以点C为旋转中心将逆时针旋转就得到;(2)见解析;(3)【分析】(1)只需要利用SAS证明△BCF≌△ACG即可得到答案;(2)法一:以为边作,与的延长线交于点K,如图,先证明,然后证明, 得到,则,过点FFMBCM,求出,即可推出,则,即:法二:过F先证明△FCN≌△FCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性质求出,再证明 得到,则(3)如图3-1所示,连接GMAG,先证明△ADE是等边三角形,得到DE=AE,即可证明得到,即点G的角平分线所在直线上运动.过G,则最小即是最小,故当MGP三点共线时,最小;如图3-2所示,过点GGQABQ,连接DG,求出DMQG的长即可求解.【详解】(1)∵△ABC和△GEF都是等边三角形,BC=ACCF=CG,∠ACB=∠FCG=60°,∴∠ACB+∠ACF=FCG+∠ACF∴∠FCB=∠GCA∴△BCF≌△ACGSAS),∴△BFC可以看作是△AGC绕点C逆时针旋转60度所得;(2)法一:证明:以为边作,与的延长线交于点K,如图,均为等边三角形,,∠GFE=60°,∴∠EFH+∠ACB=180°,是等边的中线,中,过点FFMBCMKM=CM∵∠K=30°,,即:法二证明:过F是等边的中线,∴△FCN≌△FCMAAS),FC=2FNCM=CN同法一,中, (3)如图3-1所示,连接GMAGDE分别是ABAC的中点,DE是△ABC的中位线,CDABDEBC,∠CDA=90°,∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,∴△ADE是等边三角形,∠FDE=30°,DE=AE∵△GEF是等边三角形,EF=EG,∠GEF=60°,∴∠AEG=∠AED+∠DEG=∠FEG+∠DEG=∠FED,即点G的角平分线所在直线上运动.G,则最小即是最小,∴当MGP三点共线时,最小如图3-2所示,过点GGQABQ,连接DGQG=PG∵∠MAP=60°,∠MPA=90°,∴∠AMP=30°,AM=2APDAB的中点,AB=12,AD=BD=6,MBD靠近B点的三等分点,MD=4,AM=10,AP=5,又∵∠PAG=30°,AG=2GP【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,含30度角的直角三角形的性,勾股定理,解题的关键在于能够正确作出辅助线求解.5、(1)见解析;(2)【分析】(1)由AD//CECD//AE ,得四边形AECD为平行四边形,根据直角三角形斜边上中线性质,得CE=AE,可知四边形ADCE是菱形;(2)由菱形的性质可得当∠DAE=60°时,∠CAE=30°,可求BC,再根据勾股定理求出AC,最后求面积即可.【详解】解:(1)∵∴四边形是平行四边形.的中点,∴四边形是菱形;(2)∵四边形是菱形,∵在Rt中,【点睛】此题主要考查了菱形的性质和判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,勾股定理,三角形面积,能够灵活运用菱形知识解决有关问题是解题的关键. 

    相关试卷

    初中数学北京课改版八年级下册第十五章 四边形综合与测试一课一练:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试一课一练,共29页。

    2021学年第十五章 四边形综合与测试随堂练习题:

    这是一份2021学年第十五章 四边形综合与测试随堂练习题,共26页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试同步练习题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步练习题,共27页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map