沪教版 (五四制)第十二章 实数综合与测试同步训练题
展开沪教版(上海)七年级数学第二学期第十二章实数同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、0.64的平方根是( )
A.0.8 B.±0.8 C.0.08 D.±0.08
2、的算术平方根是( )
A. B. C. D.
3、下列运算正确的是( )
A. B. C. D.
4、若,则的值为( )
A. B. C. D.或
5、若关于x的方程(k2﹣9)x2+(k﹣3)x=k+6是一元一次方程,则k的值为( )
A.9 B.﹣3 C.﹣3或3 D.3
6、一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.若每个小立方块的体积为216cm³,则该几何体的最大高度是( )
A.6cm B.12cm C.18cm D.24cm
7、以下正方形的边长是无理数的是( )
A.面积为9的正方形 B.面积为49的正方形
C.面积为8的正方形 D.面积为25的正方形
8、在实数,,,,,,,1.12112111211112…(每两 个2之间依次多一个1)中,无理数有( )个
A.2 B.3 C.4 D.5
9、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为( )
A.4 B.6 C.12 D.36
10、下列各数中,最小的数是( )
A.0 B. C. D.﹣3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、比较大小:_________.
2、若是整数,则正整数的最小值是______.
3、比较大小:___.(用“>”,“<”或“=”填空)
4、对于有理数定义一种新运算:,如,则的值为_____________.
5、计算:_______.
三、解答题(10小题,每小题5分,共计50分)
1、如果一个四位数m满足各数位上的数字均不为0,将它的千位数字与百位数字之积记为,十位数字与个位数字之和记为,记F(m),若F(m)为整效,则称这个数为“运算数“,例如:∵F(5332)3,3是整数,∴5332是“运算数”;∵F(1722),不是整数,∴1722不是“运算数”.
(1)请判断9981与2314是否是“运算数”,并说明理由.
(2)若自然数s和t都是“运算数”,其中s=8910+11x(2≤x≤8,且x为整数);t的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,且F(t)=4,规定:k,求所有k的值.
2、观察下列等式:
第1个等式:12=13;
第2个等式:(1+2)2=13+23;
第3个等式:(1+2+3)2=13+23+33;
第4个等式:(1+2+3+4)2=13+23+33+43;
……
按照以上规律,解决下列问题:
(1)写出第5个等式:__________________;
(2)写出第n(n为正整数)个等式:__________________(用含n的等式表示);
(3)利用上述规律求值:.
3、已知a,b,c,d是有理数,对于任意,我们规定:.
例如:.
根据上述规定解决下列问题:
(1)_________;
(2)若,求的值;
(3)已知,其中是小于10的正整数,若x是整数,求的值.
4、求下列各数的算术平方根:
(1)0.64 (2)
5、计算:
(1).
(2)+()2﹣
6、计算:.
7、计算
(1)
(2)
8、(1)计算:(﹣)×(﹣1)2021+﹣;
(2)求x的值:(3x+2)3﹣1=.
9、解方程:
(1)x2=81;
(2)(x﹣1)3=27.
10、已知x-2的平方根是±2,x+2y+7的立方根是3,求3x+y的算术平方根.
-参考答案-
一、单选题
1、B
【分析】
根据如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根,由此求解即可.
【详解】
解:∵(±0.8)2=0.64 ,
∴0.64的平方根是±0.8,
故选:B.
【点睛】
本题主要考查了平方根的概念,解题的关键在于掌握平方根的正负两种情况.
2、A
【分析】
根据算术平方根的定义即可完成.
【详解】
∵
∴的算术平方根是
即
故选:A
【点睛】
本题考查了算术平方根的计算,掌握算术平方根的定义是关键.
3、B
【分析】
根据立方根,算术平方根和有理数的乘方计算法则进行求解判断即可.
【详解】
解:A、,计算错误,不符合题意;
B、,计算正确,符合题意;
C、,计算错误,不符合题意;
D、,计算错误,不符合题意;
故选B.
【点睛】
本题主要考查了立方根,算术平方根,有理数的乘方,熟知相关计算法则是解题的关键.
4、C
【分析】
化简后利用平方根的定义求解即可.
【详解】
解:∵,
∴x2-9=55,
∴x2=64,
∴x=±8,
故选C.
【点睛】
本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.
5、B
【分析】
含有一个未知数,且未知数的最高次数是1,这样在整式方程是一元一次方程,根据定义列方程与不等式,从而可得答案.
【详解】
解: 关于x的方程(k2﹣9)x2+(k﹣3)x=k+6是一元一次方程,
由①得:
由②得:
所以:
故选B
【点睛】
本题考查的是一元一次方程的应用,利用平方根的含义解方程,掌握“一元一次方程的定义”是解本题的关键.
6、D
【分析】
由每个小立方体的体积为216cm3,得到小立方体的棱长,再由三视图可知,最高处有四个小立方体,则该几何体的最大高度是4×6=24cm.
【详解】
解:∵每个小立方体的体积为216cm3,
∴小立方体的棱长,
由三视图可知,最高处有四个小立方体,
∴该几何体的最大高度是4×6=24cm,
故选D.
【点睛】
本题主要考查了立方根和三视图,解题的关键在于能够正确求出小立方体的棱长.
7、C
【分析】
理解无理数的分类:无限不循环小数或开方不能开尽的数,求出正方形边长由此判断即可得出.
【详解】
解:A、面积为9的正方形的边长为3,是整数,属于有理数,故本选项不合题意;
B、面积为49的正方形的边长为7,是整数,属于有理数,故本选项不合题意;
C、面积为8的正方形的边长为,是无理数,故本选项符合题意;
D、面积为25的正方形的边长为5,是整数,属于有理数,故本选项不合题意.
故选:C.
【点睛】
本题主要考查了无理数的分类,准确掌握无理数的分类是解题关键.
8、C
【分析】
利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数.
【详解】
有理数有:,,,,一共四个.
无理数有:,,,1.12112111211112…(每两 个2之间依次多一个1),一共四个.
故选:C.
【点睛】
此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.
9、D
【分析】
根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.
【详解】
解:∵一个正数a的两个不同平方根是2x-2和6-3x,
∴2x-2+6-3x=0,
解得:x=4,
∴2x-2=2×4-2=8-2=6,
∴正数a=62=36.
故选择D.
【点睛】
本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.
10、C
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:,
所给的各数中,最小的数是.
故选:C.
【点睛】
本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
二、填空题
1、<
【分析】
先把两个数同时平方后比较大小,因为都是正数,即平方后的数越大,其这个数越大,由此求解即可.
【详解】
解:∵,
∴,
故答案为:<.
【点睛】
本题主要考查了实数比较大小,解题的关键在于能够熟练掌握实数比较大小的方法.
2、21
【分析】
由,要使是整数,则n必须是21的倍数,且这个倍数必须为整数的平方,由此可求得最小的整数n.
【详解】
∵
∴84n必须为21的整数的平方倍数,即,其中m为正整数
当m=1时,n最小,且最小值为21
故答案为:21
【点睛】
本题考查了算术平方根,算术平方根的性质,对84分解质因数、掌握可开得尽方的数的特征是关键.
3、>
【分析】
先求出,然后利用作差法得到,即可得到答案.
【详解】
解:∵,
∴,
∴,
∴,
故答案为:>.
【点睛】
本题主要考查了实数比较大小,解题的关键在于能够熟练掌握实数比较大小的方法.
4、##
【分析】
根据新定义运算的规律,先计算,所得的结果再与(-1)进行“”运算.
【详解】
解:由题意得,,
故答案为:.
【点睛】
本题考查新定义、有理数的混合运算等知识,是重要考点,掌握相关知识是解题关键.
5、1
【分析】
根据算术平方根的计算方法求解即可.
【详解】
解:.
故答案为:1.
【点睛】
此题考查了求解算术平方根,解题的关键是熟练掌握算术平方根的计算方法.
三、解答题
1、(1)9981是“运算数”,2314不是“运算数”;(2)738.5
【分析】
(1)根据“运算数”的定义计算即可;
(2)根据找出,设,其中,且为整数,由,找出的值,代入中即可得解.
【详解】
(1),9是整数,∴9981是“运算数”,
,不是整数,∴2314不是“运算数”;
(2),且为整数,
可为:8932,8943,8954,8965,8976,8987,8998,
是“运算数”,
,,
的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,
设百位上的数字为,个位数上的数字为,则千位上的数字为,十位上的数字为,其中且为整数,
,
,
,即,
当时,,其他情况不满足题意,
,
.
【点睛】
本题考查新定义下的实数运算,掌握“运算数”的定义是解题的关键.
2、
(1)(1+2+3+4+5)2=13+23+33+43+53;
(2)(1+2+3+4+5+…+n)2=13+23+33+43+53+…+n3;
(3)265
【分析】
(1)根据前几个等式的变化规律解答即可;
(2)根据前几个等式的变化规律写出第n个等式即可;
(3)根据变化规律和平方差公式进行计算即可.
(1)
解:根据题意,第5个等式为(1+2+3+4+5)2=13+23+33+43+53,
故答案为:(1+2+3+4+5)2=13+23+33+43+53;
(2)
解:根据题意,第n个等式为(1+2+3+4+5+…+n)2=13+23+33+43+53+…+n3,
故答案为:(1+2+3+4+5+…+n)2=13+23+33+43+53+…+n3;
(3)
解:由(2)中(1+2+3+4+5+…+n)2=13+23+33+43+53+…+n3知,
(1+2+3+4+5+…+20)2=13+23+33+43+53+…+203①,
(1+2+3+4+5+…+10)2=13+23+33+43+53+…+103②,
①-②得:
(1+2+3+4+5+…+20+1+2+3+4+5+…+10)×(11+12+13+…+20)=113+123+133+…+203,
∴
=(1+2+3+4+5+…+20+1+2+3+4+5+…+10)
=265.
【点睛】
本题考查数字类规律探究、平方差公式、与实数运算相关的规律题,理解题意,正确得出等式的变化规律并能灵活运用是解答的关键.
3、
(1)-5
(2)
(3)k=1,4,7.
【分析】
(1)根据规定代入数据求解即可;
(2)根据规定代入整式,利用方程的思想求解即可;
(3)根据规定代入整式,利用方程的思想,用含的式子表示x,利用是小于10的正整数,x是整数,就可求出的值.
(1)
解:;
(2)
解:
即:
(3)
解:,
即:
因为是小于10的正整数且x是整数,
所以k=1时,x=3;k=4时,x=4;k=7时,x=5.
所以k=1,4,7.
【点睛】
本题考查新定义问题.新定义问题是一道创设情境、引入新的数学概念的探索性问题,发现问题间的区别与联系,创造性地解决问题,主要考察数形结合、类比与归纳的数学思想方法.
4、 (1) 0.8; (2)
【分析】
根据算术平方根的定义求解即可.
【详解】
解:(1)因为0.82=0.64,
所以0.64的算术平方根是0.8,即=0.8.
(2)因为,
所以的算术平方根是,即.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.
5、(1);(2)
【分析】
(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;
(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.
【详解】
(1)原式,
;
(2)原式,
.
【点睛】
此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.
6、.
【分析】
先计算算术平方根、立方根、乘方、化简绝对值,再计算实数的加减法即可得.
【详解】
解:原式
.
【点睛】
本题考查了算术平方根、立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.
7、
(1)-2
(2)1
【分析】
(1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;
(2)先去绝对值,去括号,再进行实数的加、减混合计算即可;
(1)
解:
;
(2)
解:
.
【点睛】
本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.
8、(1);(2).
【分析】
(1)先计算乘方、立方根和算术平方根,再计算加减法即可得;
(2)利用立方根解方程即可得.
【详解】
解:(1)原式
;
(2),
,
,
,
,
.
【点睛】
本题考查了立方根、算术平方根、利用立方根解方程等知识点,熟练掌握各运算法则是解题关键.
9、(1)x=±9;(2)x=4
【分析】
(1)方程利用平方根定义开方即可求出解;
(2)方程利用立方根定义开立方即可求出解.
【详解】
解:(1)开方得:x=±9;
(2)开立方得:x﹣1=3,
解得:x=4.
【点睛】
本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).
10、5
【分析】
根据题意直接利用平方根以及立方根的性质得出x,y的值,进而利用算术平方根的定义得出答案.
【详解】
解:∵x-2的平方根是±2,
∴x-2=4,
解得:x=6,
∵x+2y+7的立方根是3,
∴6+2×y+7=27,
解得:y=7,
∴3x+y=25,
∴3x+y的算术平方根是5.
【点睛】
本题主要考查平方根以及立方根的性质、算术平方根,正确得出x,y的值是解题的关键.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题,共19页。试卷主要包含了下列各组数中相等的是,估计的值在,下列说法正确的是,16的平方根是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共24页。试卷主要包含了4的平方根是,对于两个有理数,3的算术平方根为,下列各式中正确的是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共1页。试卷主要包含了下列判断,若,则的值为,在实数中,无理数的个数是,下列各式中正确的是,三个实数,2,之间的大小关系等内容,欢迎下载使用。