终身会员
搜索
    上传资料 赚现金
    2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数同步训练试卷(精选含答案)
    立即下载
    加入资料篮
    2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数同步训练试卷(精选含答案)01
    2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数同步训练试卷(精选含答案)02
    2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数同步训练试卷(精选含答案)03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)第十二章 实数综合与测试同步训练题

    展开
    这是一份沪教版 (五四制)第十二章 实数综合与测试同步训练题,共1页。试卷主要包含了若,则的值为,若关于x的方程,以下正方形的边长是无理数的是等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数同步训练

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、0.64的平方根是(  

    A.0.8 B.±0.8 C.0.08 D.±0.08

    2、的算术平方根是(   

    A. B. C. D.

    3、下列运算正确的是(   

    A. B. C. D.

    4、若,则的值为(  

    A. B. C. D.

    5、若关于x的方程(k2﹣9)x2+(k﹣3)xk+6是一元一次方程,则k的值为(  )

    A.9 B.﹣3 C.﹣3或3 D.3

    6、一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.若每个小立方块的体积为216cm³,则该几何体的最大高度是(   

    A.6cm B.12cm C.18cm D.24cm

    7、以下正方形的边长是无理数的是(   

    A.面积为9的正方形 B.面积为49的正方形

    C.面积为8的正方形 D.面积为25的正方形

    8、在实数,1.12112111211112…(每两 个2之间依次多一个1)中,无理数有(    )个

    A.2 B.3 C.4 D.5

    9、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为(   

    A.4 B.6 C.12 D.36

    10、下列各数中,最小的数是(   

    A.0 B. C. D.﹣3

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、比较大小:_________

    2、若是整数,则正整数的最小值是______.

    3、比较大小:___.(用“>”,“<”或“=”填空)

    4、对于有理数定义一种新运算:,如,则的值为_____________.

    5、计算:_______.

    三、解答题(10小题,每小题5分,共计50分)

    1、如果一个四位数m满足各数位上的数字均不为0,将它的千位数字与百位数字之积记为,十位数字与个位数字之和记为,记Fm,若Fm)为整效,则称这个数为“运算数“,例如:∵F(5332)3,3是整数,∴5332是“运算数”;∵F(1722)不是整数,∴1722不是“运算数”.

    (1)请判断9981与2314是否是“运算数”,并说明理由.

    (2)若自然数st都是“运算数”,其中s=8910+11x(2≤x≤8,且x为整数);t的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,且Ft)=4,规定:k,求所有k的值.

    2、观察下列等式:

    第1个等式:12=13

    第2个等式:(1+2)2=13+23

    第3个等式:(1+2+3)2=13+23+33

    第4个等式:(1+2+3+4)2=13+23+33+43

    ……

    按照以上规律,解决下列问题:

    (1)写出第5个等式:__________________;

    (2)写出第nn为正整数)个等式:__________________(用含n的等式表示);

    (3)利用上述规律求值:

    3、已知abcd是有理数,对于任意,我们规定:

    例如:

    根据上述规定解决下列问题:

    (1)_________;

    (2)若,求的值;

    (3)已知,其中是小于10的正整数,若x是整数,求的值.

    4、求下列各数的算术平方根:

    (1)0.64            (2)

    5、计算:

    (1)

    (2)+(2

    6、计算:.

    7、计算

    (1)

    (2)

    8、(1)计算:(﹣)×(﹣1)2021+

    (2)求x的值:(3x+2)3﹣1=

    9、解方程:

    (1)x2=81;

    (2)(x﹣1)3=27.

    10、已知x-2的平方根是±2,x+2y+7的立方根是3,求3xy的算术平方根.

     

    -参考答案-

    一、单选题

    1、B

    【分析】

    根据如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根,由此求解即可.

    【详解】

    解:∵(±0.8)2=0.64 

    ∴0.64的平方根是±0.8,

    故选:B.

    【点睛】

    本题主要考查了平方根的概念,解题的关键在于掌握平方根的正负两种情况.

    2、A

    【分析】

    根据算术平方根的定义即可完成.

    【详解】

    的算术平方根是

    故选:A

    【点睛】

    本题考查了算术平方根的计算,掌握算术平方根的定义是关键.

    3、B

    【分析】

    根据立方根,算术平方根和有理数的乘方计算法则进行求解判断即可.

    【详解】

    解:A、,计算错误,不符合题意;

    B、,计算正确,符合题意;

    C、,计算错误,不符合题意;

    D、,计算错误,不符合题意;

    故选B.

    【点睛】

    本题主要考查了立方根,算术平方根,有理数的乘方,熟知相关计算法则是解题的关键.

    4、C

    【分析】

    化简后利用平方根的定义求解即可.

    【详解】

    解:∵

    x2-9=55,

    x2=64,

    x=±8,

    故选C.

    【点睛】

    本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.

    5、B

    【分析】

    含有一个未知数,且未知数的最高次数是1,这样在整式方程是一元一次方程,根据定义列方程与不等式,从而可得答案.

    【详解】

    解: 关于x的方程(k2﹣9)x2+(k﹣3)xk+6是一元一次方程,

    由①得:

    由②得:

    所以:

    故选B

    【点睛】

    本题考查的是一元一次方程的应用,利用平方根的含义解方程,掌握“一元一次方程的定义”是解本题的关键.

    6、D

    【分析】

    由每个小立方体的体积为216cm3,得到小立方体的棱长,再由三视图可知,最高处有四个小立方体,则该几何体的最大高度是4×6=24cm.

    【详解】

    解:∵每个小立方体的体积为216cm3

    ∴小立方体的棱长

    由三视图可知,最高处有四个小立方体,

    ∴该几何体的最大高度是4×6=24cm,

    故选D.

    【点睛】

    本题主要考查了立方根和三视图,解题的关键在于能够正确求出小立方体的棱长.

    7、C

    【分析】

    理解无理数的分类:无限不循环小数或开方不能开尽的数,求出正方形边长由此判断即可得出.

    【详解】

    解:A、面积为9的正方形的边长为3,是整数,属于有理数,故本选项不合题意;

    B、面积为49的正方形的边长为7,是整数,属于有理数,故本选项不合题意;

    C、面积为8的正方形的边长为,是无理数,故本选项符合题意;

    D、面积为25的正方形的边长为5,是整数,属于有理数,故本选项不合题意.

    故选:C.

    【点睛】

    本题主要考查了无理数的分类,准确掌握无理数的分类是解题关键.

    8、C

    【分析】

    利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数.

    【详解】

    有理数有:,一共四个.

    无理数有:,1.12112111211112…(每两 个2之间依次多一个1),一共四个.

    故选:C.

    【点睛】

    此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.

    9、D

    【分析】

    根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.

    【详解】

    解:∵一个正数a的两个不同平方根是2x-2和6-3x

    ∴2x-2+6-3x=0,

    解得:x=4,

    ∴2x-2=2×4-2=8-2=6,

    ∴正数a=62=36.

    故选择D.

    【点睛】

    本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.

    10、C

    【分析】

    有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.

    【详解】

    解:

    所给的各数中,最小的数是

    故选:C.

    【点睛】

    本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.

    二、填空题

    1、<

    【分析】

    先把两个数同时平方后比较大小,因为都是正数,即平方后的数越大,其这个数越大,由此求解即可.

    【详解】

    解:∵

    故答案为:<.

    【点睛】

    本题主要考查了实数比较大小,解题的关键在于能够熟练掌握实数比较大小的方法.

    2、21

    【分析】

    ,要使是整数,则n必须是21的倍数,且这个倍数必须为整数的平方,由此可求得最小的整数n

    【详解】

    ∴84n必须为21的整数的平方倍数,即,其中m为正整数

    m=1时,n最小,且最小值为21

    故答案为:21

    【点睛】

    本题考查了算术平方根,算术平方根的性质,对84分解质因数、掌握可开得尽方的数的特征是关键.

    3、>

    【分析】

    先求出,然后利用作差法得到,即可得到答案.

    【详解】

    解:∵

    故答案为:>.

    【点睛】

    本题主要考查了实数比较大小,解题的关键在于能够熟练掌握实数比较大小的方法.

    4、##

    【分析】

    根据新定义运算的规律,先计算,所得的结果再与(-1)进行“”运算.

    【详解】

    解:由题意得,

    故答案为:

    【点睛】

    本题考查新定义、有理数的混合运算等知识,是重要考点,掌握相关知识是解题关键.

    5、1

    【分析】

    根据算术平方根的计算方法求解即可.

    【详解】

    解:

    故答案为:1.

    【点睛】

    此题考查了求解算术平方根,解题的关键是熟练掌握算术平方根的计算方法.

    三、解答题

    1、(1)9981是“运算数”,2314不是“运算数”;(2)738.5

    【分析】

    (1)根据“运算数”的定义计算即可;

    (2)根据找出,设,其中,且为整数,由,找出的值,代入中即可得解.

    【详解】

    (1),9是整数,∴9981是“运算数”,

    不是整数,∴2314不是“运算数”;

    (2)为整数,

    可为:8932,8943,8954,8965,8976,8987,8998,

    是“运算数”,

    的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,

    设百位上的数字为,个位数上的数字为,则千位上的数字为,十位上的数字为,其中为整数,

    ,即

    时,,其他情况不满足题意,

    【点睛】

    本题考查新定义下的实数运算,掌握“运算数”的定义是解题的关键.

    2、

    (1)(1+2+3+4+5)2=13+23+33+43+53

    (2)(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3

    (3)265

    【分析】

    (1)根据前几个等式的变化规律解答即可;

    (2)根据前几个等式的变化规律写出第n个等式即可;

    (3)根据变化规律和平方差公式进行计算即可.

    (1)

    解:根据题意,第5个等式为(1+2+3+4+5)2=13+23+33+43+53

    故答案为:(1+2+3+4+5)2=13+23+33+43+53

    (2)

    解:根据题意,第n个等式为(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3

    故答案为:(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3

    (3)

    解:由(2)中(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3知,

    (1+2+3+4+5+…+20)2=13+23+33+43+53+…+203①,

    (1+2+3+4+5+…+10)2=13+23+33+43+53+…+103②,

    ①-②得:

    (1+2+3+4+5+…+20+1+2+3+4+5+…+10)×(11+12+13+…+20)=113+123+133+…+203

    =(1+2+3+4+5+…+20+1+2+3+4+5+…+10)

    =265.

    【点睛】

    本题考查数字类规律探究、平方差公式、与实数运算相关的规律题,理解题意,正确得出等式的变化规律并能灵活运用是解答的关键.

    3、

    (1)-5

    (2)

    (3)k=1,4,7.

    【分析】

    (1)根据规定代入数据求解即可;

    (2)根据规定代入整式,利用方程的思想求解即可;

    (3)根据规定代入整式,利用方程的思想,用含的式子表示x,利用是小于10的正整数,x是整数,就可求出的值.

    (1)

    解:

    (2)

    解:

    即:

    (3)

    解:

    即:

    因为是小于10的正整数且x是整数,

    所以k=1时,x=3;k=4时,x=4;k=7时,x=5.

    所以k=1,4,7.

    【点睛】

    本题考查新定义问题.新定义问题是一道创设情境、引入新的数学概念的探索性问题,发现问题间的区别与联系,创造性地解决问题,主要考察数形结合、类比与归纳的数学思想方法.

    4、 (1) 0.8; (2)

    【分析】

    根据算术平方根的定义求解即可.

    【详解】

    解:(1)因为0.82=0.64,

    所以0.64的算术平方根是0.8,即=0.8.

    (2)因为

    所以的算术平方根是,即

    【点睛】

    本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.

    5、(1);(2)

    【分析】

    (1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;

    (2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.

    【详解】

    (1)原式

    (2)原式

    【点睛】

    此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.

    6、

    【分析】

    先计算算术平方根、立方根、乘方、化简绝对值,再计算实数的加减法即可得.

    【详解】

    解:原式

    【点睛】

    本题考查了算术平方根、立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.

    7、

    (1)-2

    (2)1

    【分析】

    (1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;

    (2)先去绝对值,去括号,再进行实数的加、减混合计算即可;

    (1)

    解:

    (2)

    解:

    【点睛】

    本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.

    8、(1);(2)

    【分析】

    (1)先计算乘方、立方根和算术平方根,再计算加减法即可得;

    (2)利用立方根解方程即可得.

    【详解】

    解:(1)原式

    (2)

    【点睛】

    本题考查了立方根、算术平方根、利用立方根解方程等知识点,熟练掌握各运算法则是解题关键.

    9、(1)x=±9;(2)x=4

    【分析】

    (1)方程利用平方根定义开方即可求出解;

    (2)方程利用立方根定义开立方即可求出解.

    【详解】

    解:(1)开方得:x=±9;

    (2)开立方得:x﹣1=3,

    解得:x=4.

    【点睛】

    本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).

    10、5

    【分析】

    根据题意直接利用平方根以及立方根的性质得出xy的值,进而利用算术平方根的定义得出答案.

    【详解】

    解:∵x-2的平方根是±2,

    x-2=4,

    解得:x=6,

    x+2y+7的立方根是3,

    ∴6+2×y+7=27,

    解得:y=7,

    ∴3xy=25,

    ∴3xy的算术平方根是5.

    【点睛】

    本题主要考查平方根以及立方根的性质、算术平方根,正确得出xy的值是解题的关键.

     

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题,共19页。试卷主要包含了下列各组数中相等的是,估计的值在,下列说法正确的是,16的平方根是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共24页。试卷主要包含了4的平方根是,对于两个有理数,3的算术平方根为,下列各式中正确的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共1页。试卷主要包含了下列判断,若,则的值为,在实数中,无理数的个数是,下列各式中正确的是,三个实数,2,之间的大小关系等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map