终身会员
搜索
    上传资料 赚现金

    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十二章实数专项练习试卷(无超纲)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十二章实数专项练习试卷(无超纲)第1页
    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十二章实数专项练习试卷(无超纲)第2页
    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十二章实数专项练习试卷(无超纲)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题

    展开

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共1页。试卷主要包含了如果a,64的立方根为.,三个实数,2,之间的大小关系,若,则整数a的值不可能为,9的平方根是等内容,欢迎下载使用。
    沪教版(上海)七年级数学第二学期第十二章实数专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、100的算术平方根是(    A.10 B. C. D.2、实数在哪两个连续整数之间(    A.3与4 B.4与5 C.5与6 D.12与133、若,则的值为(    A. B. C. D.4、如果ab分别是的整数部分和小数部分,那么的值是(    A.8 B. C.4 D.5、64的立方根为(    ).A.2 B.4 C.8 D.-26、一个正数的两个平方根分别是2a,则a的值为(    A.1 B.﹣1 C.2 D.﹣27、三个实数,2,之间的大小关系(  )A.>2 B.>2> C.2> D.<2<8、若,则整数a的值不可能为(    A.2 B.3 C.4 D.59、9的平方根是(  )A.±3 B.-3 C.3 D.10、下列说法中正确的有(  )①±2都是8的立方根 x的平方根是3   ④﹣=2.A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、计算:__________.2、计算下列各题:(1)|3﹣4|﹣1=_____;(2)_____;(3)30=_____;(4)_____.3、引入新数i,新数i满足分配律、结合律、交换律,已知,则_____.4、实数16的平方根是___,=___,5的立方根记作___.5、设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,(1)[﹣3.9)=______.(2)下列结论中正确的是______(填写所有正确结论的序号)①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是1;④存在实数x,使[x)﹣x=0.5成立.三、解答题(10小题,每小题5分,共计50分)1、任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72第一次[]=8,第二次[]=2,第三次[]=1,这样对72只需进行3次操作变为1.(1)对10进行1次操作后变为_______,对200进行3次作后变为_______;(2)对实数m恰进行2次操作后变成1,则m最小可以取到_______;(3)若正整数m进行3次操作后变为1,求m的最大值.2、已知xy满足,求xy的值.3、计算:(1)(2)﹣16÷(﹣2)24、对于有理数ab,定义运算:(1)计算的值; (2)填空_______:(填“>”、“<”或“=”)(3)相等吗?若相等,请说明理由.5、(1)计算(2)计算(3)解方程(4)解方程组6、计算:(π-4)0+|-6|-+7、阅读材料,回答问题.下框中是小马同学的作业,老师看了后,找来小马.问道:“小马同学,你标在数轴上的两个点对应题中两个无理数,是吗?”小马点点头.老师又说:“你这两个无理数对应的点找得非常准确,遗憾的是没有完成全部解答.”请把实数|﹣|,﹣π,﹣4,,2表示在数轴上,并比较它们的大小(用<号连接).解:请你帮小马同学将上面的作业做完.8、计算:9、先化简:,再从中选取一个合适的整数代入求值.10、计算  -参考答案-一、单选题1、A【分析】根据算术平方根的概念:一个正数x的平方等于a,即,那么这个正数x就叫做a的算术平方根,即可解答.【详解】解:∵(舍去)∴100的算术平方根是10,故选A.【点睛】本题考查了算术平方根,解题的关键是熟练掌握算术平方根的概念.2、B【分析】估算即可得到结果.【详解】解:故选:B.【点睛】本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.3、B【分析】根据算术平方根、偶次方的非负性确定ab的值,然后代入计算.【详解】解:解得所以故选:B【点睛】本题考查的是配方法的应用、非负数的性质,灵活运用配方法、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.4、B【分析】先求得的范围,进而求得的范围即可求得的值,进而代入代数式求值即可【详解】ab分别是的整数部分和小数部分,则故选B【点睛】本题考查了估算无理数的大小,二次根式的混合运算,求得的值是解题的关键.5、B【分析】根据立方根的定义进行计算即可.【详解】解:∵43=64,∴实数64的立方根是故选:B.【点睛】本题考查立方根,理解立方根的定义是正确解答的关键.6、D【分析】根据正数有两个平方根,且互为相反数,即可求解.【详解】解:根据题意得:解得:故选:D【点睛】本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的关键.7、A【分析】,根据被开方数的大小即判断这三个数的大小关系【详解】2<故选A【点睛】本题考查了实数大小比较,掌握无理数的估算是解题的关键.8、D【分析】首先确定的范围,然后求出整式a可能的值,判断求解即可.【详解】解:∵,即,即又∵∴整数a可能的值为:2,3,4,∴整数a的值不可能为5,故选:D.【点睛】此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.9、A【分析】根据平方根的定义进行判断即可.【详解】解:∵(±3)2=9∴9的平方根是±3故选:A【点睛】本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.10、B【分析】根据平方根和立方根的定义进行判断即可.【详解】解:①2是8的立方根,-2不是8的立方根,原说法错误;=x,正确;,9的平方根是3,原说法错误;④﹣=2,正确;综上,正确的有②④共2个,故选:B.【点睛】本题考查了立方根,平方根,熟练掌握立方根的定义是解本题的关键.二、填空题1、3【分析】根据实数的运算法则即可求出答案.【详解】解:原式【点睛】本题考查了实数的运算法则,掌握负整指数幂,零指数幂的运算性质是解本题的关键.2、0    3    1        【分析】(1)先化简绝对值,再计算减法运算即可得;(2)先计算有理数的乘方,再计算算术平方根即可得;(3)计算零指数幂即可得;(4)根据分式的加法运算法则即可得.【详解】解:(1)原式故答案为:0;(2)原式故答案为:3;(3)原式故答案为:1;(4)原式故答案为:【点睛】本题考查了零指数幂、算术平方根、分式的加法等知识点,熟练掌握各运算法则是解题关键.3、2【分析】先根据平方差公式化简,再把代入计算即可.【详解】解:故答案为2.【点睛】本题考查了新定义运算及平方差公式,熟练掌握平方差公式是解答本题的关键.4、            【分析】分别根据平方根、算术平方根、立方根的定义依次可求解.【详解】解:实数16的平方根是=5的立方根记作故答案为:【点睛】本题主要考查了立方根、平方根、算术平方根的定义.用到的知识点为:一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方根有2个;任意一个数的立方根只有1个.5、-3;    ③④    【分析】(1)利用题中的新定义判断即可.(2)根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【详解】(1)表示大于-3.9的最小整数为-3,所以[﹣3.9)=-3(2)解: ①[0)=1,故本项错误; ②[x)−x>0,但是取不到0,故本项错误; ③[x)−x⩽1,即最大值为1,故本项正确; ④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.∴正确的选项是:③④;故答案为:③④.【点睛】此题考查了实数的运算,理解新定义实数的运算法则是解本题的关键.三、解答题1、(1)3;1;(2);(3)的最大值为255【详解】解:(1)∵∴对10进行1次操作后变为3;同理可得同理可得同理可得∴对200进行3次作后变为1,故答案为:3;1;(2)设m进行第一次操作后的数为x∵要经过两次操作.故答案为:(3)设m经过第一次操作后的数为n,经过第二次操作后的数为x∵要经过3次操作,故是整数.的最大值为255.【点睛】本题考查取整函数及无理数的估计,正确理解取整含义是求解本题的关键.2、x=5;y=2【分析】根据非负数的性质可得关于xy的方程组,求解可得其值;【详解】解:由题意可得联立得解方程组得:xy的值分别为5、2.【点睛】此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.3、(1)(2)【分析】(1)根据有理数的混合运算进行计算即可;(2)先根据求一个数的立方根求得,进而根据有理数的混合运算进行计算即可【详解】(1)原式(2)原式【点睛】本题考查了求一个数的立方根,有理数的混合运算,正确的计算是解题的关键.4、(1);(2)=;(3)相等,证明见详解.【分析】(1)按照给定的运算程序,一步一步计算即可; (2)先按新定义运算,再比较大小; (3)按新定义分别运算即可说明理由.【详解】解:(1)(2)=故答案是:=;(3)相等=【点睛】此题是定义新运算题型,直接把对应的数字代入所给的式子可求出所要的结果.5、(1);(2);(3);(4)【分析】(1)先计算算术平方根与立方根,再计算加减法即可得;(2)先化简绝对值,再计算实数的加减法即可得;(3)利用平方根解方程即可得;(4)利用加减消元法解二元一次方程组即可得.【详解】解:(1)原式(2)原式(3)(4)由②①得:解得代入①得:解得故方程组的解为【点睛】本题考查了算术平方根与立方根、实数的加减、解二元一次方程组等知识点,熟练掌握各运算法则和方程组的解法是解题关键.6、9【分析】根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解.【详解】解:原式【点睛】本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键.7、图见解析,﹣4<﹣π<|﹣|<2<【分析】根据确定原点,根据数轴上的点左边小于右边的排序依次表示即可.【详解】把实数||,,2表示在数轴上如图所示,<||<2<【点睛】本题考查用数轴比较点的大小,根据题意先确定原点是解题的关键.8、7【分析】根据实数的性质化简即可求解.【详解】解:原式【点睛】此题主要考查实数的混合运算,解题的关键是熟知负指数幂的运算法则.9、∴或933或925或91【点睛】本题是一道以新定义为背景的阅读题目,能够根据定义列出代数式,根据各数的取值范围求出aby的值是解答的关键.7.2x-2,2.【分析】根据分式的加法和除法可以化简题目中的式子,然后在中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】解:原式=x取整数,x可取2,x=2时,原式=2×2-2=2.【点睛】本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.10、【分析】根据立方根,算术平方根,绝对值的计算法则进行求解即可.【详解】解:【点睛】本题主要考查了实数的运算,解题的关键在于能够熟练掌握求立方根,算术平方根,绝对值的计算法则. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习,共19页。试卷主要包含了4的平方根是,下列各式中,化简结果正确的是,下列说法正确的是,下列判断中,你认为正确的是,下列四个数中,最小的数是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习题,共1页。试卷主要包含了若 ,则,的相反数是,下列说法正确的是,下列判断,实数在哪两个连续整数之间等内容,欢迎下载使用。

    七年级下册第十二章 实数综合与测试同步训练题:

    这是一份七年级下册第十二章 实数综合与测试同步训练题,共1页。试卷主要包含了在下列各数,下列说法正确的是,3的算术平方根是,可以表示等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map