初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试习题
展开沪教版(上海)七年级数学第二学期第十二章实数定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为2810的末位数字是( )
A.2 B.4 C.8 D.6
2、在实数,,,,,,,0.1010010001…(相邻两个1中间依次多1个0)中,无理数有( ).
A.2个 B.3个 C.4个 D.5个
3、下列说法正确的是( )
A.是最小的正无理数 B.绝对值最小的实数不存在
C.两个无理数的和不一定是无理数 D.有理数与数轴上的点一一对应
4、下列说法正确的是( )
A.是分数
B.0.1919919991…(每相邻两个1之间9的个数逐次加1)是有理数
C.﹣3x2y+4x﹣1是三次三项式,常数项是1
D.单项式﹣的次数是2,系数为﹣
5、的算术平方根是( )
A. B. C. D.
6、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为( )
A.4 B.6 C.12 D.36
7、在,, 0, , , 0.010010001……, , -0.333…, , 3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )
A.2个 B.3个 C.4个 D.5个
8、下列说法中错误的是( )
A.9的算术平方根是3 B.的平方根是
C.27的立方根为 D.平方根等于±1的数是1
9、下列判断中,你认为正确的是( )
A.0的倒数是0 B.是分数 C.3<<4 D.的值是±3
10、下列四个数中,最小的数是( )
A.﹣3 B.﹣ C.0 D.﹣π
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个正方形的面积为5,则它的边长为_____.
2、对于实数a,b,定义运算“*”如下:a*b=(a+b)2﹣(a﹣b)2.若(m+2)*(m﹣3)=24,则m的值为______.
3、若实数a,b互为相反数,c,d互为倒数,e是的整数部分,f是的小数部分,则代数式的值是 ___.
4、规定了一种新运算:,计算:(3*4)*5=___.
5、若,且a,b是两个连续的整数,则的值为______.
三、解答题(10小题,每小题5分,共计50分)
1、求下列各数的立方根:
(1)729
(2)
(3)
(4)
2、计算:
3、计算:
(1)18+(﹣17)+7+(﹣8);
(2)×(﹣12);
(3)﹣22+|﹣1|+.
4、如图是一个无理数筛选器的工作流程图.
(1)当x为16时,y值为______;
(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;
(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况?
(4)当输出的y值是时,判断输入的x值是否唯一?如果不唯一,请写出其中的三个.
5、将下列各数填入相应的横线上:
整数:{ …}
有理数: { …}
无理数: { …}
负实数: { …}.
6、阅读下面材料,并按要求完成相应问题:
定义:如果一个数的平方等于-1,记为,这个数叫做虚数单位,把形如的数叫做复数,其中是这个复数的实部,是这个复数的虚部.它的加﹑减﹑乘法运算与整式的加﹑减﹑乘法运算类似.
例如:
应用:
(1)计算
(2)如果正整数a、b满足,求a、b的值.
(3)将化为(均为实数)的形式,(即化为分母中不含的形式).
7、计算:
(1)
(2)
8、计算:
(1)
(2)
9、已知.
(1)求x与y的值;
(2)求x+y的算术平方根.
10、(1)计算:﹣32﹣(2021)0+|﹣2|﹣()﹣2×(﹣);
(2)解方程:=﹣1.
-参考答案-
一、单选题
1、B
【分析】
经过观察如果2的次数除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6.用810÷4=202…2,余数是2故可知,末尾数是4.
【详解】
2n的个位数字是2,4,8,6循环,
所以810÷4=202…2,
则2810的末位数字是4.
故选:B.
【点睛】
本题考查了与实数运算相关的规律题,找到2n的末位数的循环规律是解题的关键.
2、D
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:是有理数,
是无限循环小数,是有理数,
是分数,是有理数,
,,,,0.1010010001…(相邻两个1中间依次多1个0)是无理数,共个,
故选:D.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
3、C
【分析】
利用正无理数,绝对值,以及数轴的性质判断即可.
【详解】
解:、不存在最小的正无理数,不符合题意;
、绝对值最小的实数是0,不符合题意;
、两个无理数的和不一定是无理数,例如:,符合题意;
、实数与数轴上的点一一对应,不符合题意.
故选:C.
【点睛】
本题考查了实数的运算,实数与数轴,解题的关键是熟练掌握各自的性质.
4、D
【分析】
根据有理数的定义、单项式次数和系数的定义,多项式的定义进行逐一判断即可.
【详解】
解:A、是无限不循环小数,不是分数,故此选项不符合题意;
B、0.1919919991…(每相邻两个1之间9的个数逐次加1)是无限不循环小数,不是有理数,故此选项不符合题意;
C、﹣3x2y+4x﹣1是三次三项式,常数项是-1,故此选项不符合题意;
D、单项式﹣的次数是2,系数为﹣,故此选项符合题意;
故选D.
【点睛】
本题主要考查了有理数的定义、单项式次数和系数的定义,熟知定义是解题的关键:有理数是整数和分数的统称;表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.
5、A
【分析】
根据算术平方根的定义即可完成.
【详解】
∵
∴的算术平方根是
即
故选:A
【点睛】
本题考查了算术平方根的计算,掌握算术平方根的定义是关键.
6、D
【分析】
根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.
【详解】
解:∵一个正数a的两个不同平方根是2x-2和6-3x,
∴2x-2+6-3x=0,
解得:x=4,
∴2x-2=2×4-2=8-2=6,
∴正数a=62=36.
故选择D.
【点睛】
本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.
7、C
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:=1,=2,,3,
∴无理数有,,,2.010101…(相邻两个1之间有1个0)共4个.
故选:C.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
8、C
【分析】
根据平方根,算术平方根,立方根的性质,即可求解.
【详解】
解:A、9的算术平方根是3,故本选项正确,不符合题意;
B、因为 ,4的平方根是 ,故本选项正确,不符合题意;
C、27的立方根为3,故本选项错误,符合题意;
D、平方根等于±1的数是1,故本选项正确,不符合题意;
故选:C
【点睛】
本题主要考查了平方根,算术平方根,立方根的性质,熟练掌握平方根,算术平方根,立方根的性质是解题的关键.
9、C
【分析】
根据倒数的概念即可判断A选项,根据分数的概念即可判断B选项,根据无理数的估算方法即可判断C选项,根据算术平方根的概念即可判断D选项.
【详解】
解:A、0不能作分母,所以0没有倒数,故本选项错误;
B、属于无理数,故本选项错误;
C、因为 9<15<16,所以 3<<4,故本选项正确;
D、的值是3,故本选项错误.
故选:C.
【点睛】
此题考查了倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念,解题的关键是熟练掌握倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念.
10、D
【分析】
正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断出各数中最小的是哪个即可.
【详解】
解:∵,,,,
∴,
∴最小的数是,
故选D.
【点睛】
此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
二、填空题
1、
【分析】
根据正方形面积根式求出边长,即可得出答案.
【详解】
解:边长为:
故答案为
【点睛】
本题考查了算术平方根,关键是会求一个数的算术平方根.
2、或4
【分析】
先根据新运算的定义可得一个关于的方程,再利用平方根解方程即可得.
【详解】
解:由题意得:,即,
,
或,
解得或,
故答案为:或4.
【点睛】
本题考查了利用平方根解方程,掌握理解新运算的定义是解题关键.
3、4-
【分析】
根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可.
【详解】
解:∵实数a、b互为相反数,
∴a+b=0,
∵c、d互为倒数,
∴cd=1,
∵3<<4,
∴的整数部分为3,e=3,
∵2<<3,
∴的小数部分为-2,即f=-2,
∴=0+1-3+-2=
故答案为:4-.
【点睛】
本题考查相反数、倒数、无理数的估算,掌握相反数、倒数的意义,以及无理数的整数部分、小数部分的表示方法是解决问题的关键.
4、
【分析】
根据新定义的运算法则先将3*4转化为常规运算,再计算(3*4)*5即可.
【详解】
解:(3*4)*5=.
故答案为.
【点睛】
本题考查新运算的理解,有理数乘除混合运算,倒数和与积,掌握新定义运算法则是解题关键.
5、7
【分析】
先判断出的取值范围,确定a和b的值,即可求解.
【详解】
解:∵,
∴a=3,b=4,
∴a+b=7.
故答案为:7.
【点睛】
本题考查了无理数的估算,正确估算出的取值范围是解题关键.
三、解答题
1、(1)9;(2);(3);(4)-5
【分析】
根据立方根的定义,找到一个数,使其立方等于已知的数,从而可得答案.
【详解】
解:(1)因为93=729,
所以729的立方根是9,即;
(2),因为,
所以的立方根是,即;
(3)因为,
所以的立方根是,即;
(4).
【点睛】
本题考查的是求解一个数的立方根,掌握“利用立方根的含义求解一个数的立方根”是解本题的关键.
2、
【分析】
根据立方根,算术平方根,绝对值的计算法则求解即可.
【详解】
解:
.
【点睛】
本题主要考查了立方根,算术平方根,绝对值,熟练掌握相关计算法则是解题的关键.
3、(1)0;(2)1;(3)
【分析】
(1)根据有理数的加法计算法则求解即可;
(2)根据有理数的乘法分配律求解即可;
(3)根据有理数的乘方,绝对值和算术平方根的计算法则求解即可.
【详解】
解:(1)
;
(2)
;
(3)
.
【点睛】
本题主要考查了有理数乘法的分配律,有理数的加减,有理数的乘方,化简绝对值,算术平方根,熟知相关计算法则是解题的关键.
4、
(1)
(2)0,1
(3)x<0
(4)x=3或x=9或x=81.
【分析】
(1)根据运算规则即可求解;
(2)根据0的算术平方根是0,即可判断;
(3)根据二次根式有意义的条件,被开方数是非负数即可求解;
(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.
(1)
解:当x=16时,,则y=;
故答案是:.
(2)
解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;
(3)
解:当x<0时,导致开平方运算无法进行;
(4)
解: x的值不唯一.x=3或x=9或x=81.
【点睛】
本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.
5、;;,-3.030030003…,π;-3.030030003…,;
【分析】
有理数与无理数统称实数,整数与分数统称有理数,按照无理数、有理数的定义及实数的分类标准进行分类即可.
【详解】
整数:{ }
有理数:{ }
无理数:{,-3.030 030 003…,π…};
负实数:{-3.030 030 003…, …};
【点睛】
本题考查的是实数的概念与分类,掌握“实数的分类与概念”是解本题的关键.
6、(1);(2)或;(3).
【分析】
(1)原式利用多项式乘以多项式法则,完全平方公式以及题中的新定义计算即可求出值;
(2)利用平方差公式计算得出答案;
(3)分子分母同乘以(2-i)后,把分母化为不含i的数后计算.
【详解】
(1)
∵
∴原式
(2)
∵
∴
∵a、b是正整数
∴或
(3)
【点睛】
本题考查了实数的运算,以及完全平方公式的运用,能读懂题意是解此题的关键,解题步骤为:阅读理解,发现信息;提炼信息,发现规律;运用规律,联想迁移;类比推理,解答问题.
7、(1)5;(2)
【分析】
(1)分别求解算术平方根与立方根,再进行加减运算即可;
(2)按照多项式除以单项式的法则:把多项式的每一项分别除以单项式,再把所得的商相加,从而可得答案.
【详解】
解:(1)
(2)
【点睛】
本题考查的是求解一个数的算术平方根与立方根,多项式除以单项式,掌握基础运算是解本题的关键.
8、(1);(2)
【分析】
(1)原式先化简绝对值、二次根式以及立方根,然后再进行外挂;
(2)原式先计算括号内的,再把除法转化为乘法,再进行约分即可.
【详解】
解:(1)
=
=
=;
(2)
=
=
=.
【点睛】
本题主要考查了实数的混合运算以及分式的加减乘除混合运算,掌握运算法则是解答本题的关键.
9、(1),;(2)2
【分析】
(1)根据绝对值和平方根的非负性求出x与y的值;
(2)先计算的值,即可得出的算术平方根.
【详解】
(1)由题可得:,
解得:,
∴,;
(2),
∵4的算术平方根为2,
∴的算术平方根为2.
【点睛】
本题考查绝对值与平方根的性质,以及算术平方根,掌握绝对值和平方根的非负性是解题的关键.
10、(1)-7;(2)x=9.
【分析】
(1)直接利用绝对值的性质、零指数幂的性质、负整数指数幂的性质分别化简得出答案;
(2)直接去分母,移项合并同类项解方程即可.
【详解】
解:(1)原式=﹣9﹣1+2﹣9×(﹣)
=﹣9﹣1+2+1
=﹣7;
(2)去分母得:2x﹣3(1+x)=﹣12,
去括号得:2x﹣3﹣3x=﹣12,
移项得:2x﹣3x=﹣12+3,
合并同类项得:﹣x=﹣9,
系数化1得:x=9.
【点睛】
此题主要考查了实数运算以及一元一次方程的解法,正确掌握相关运算法则是解题关键.
沪教版 (五四制)七年级下册第十二章 实数综合与测试练习: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试练习,共20页。试卷主要包含了下列说法中,正确的是,在以下实数,下列各数中,比小的数是,估计的值应该在.等内容,欢迎下载使用。
数学七年级下册第十二章 实数综合与测试随堂练习题: 这是一份数学七年级下册第十二章 实数综合与测试随堂练习题,共21页。试卷主要包含了如果a,下列实数比较大小正确的是,a为有理数,定义运算符号▽,下列说法正确的是等内容,欢迎下载使用。
2021学年第十二章 实数综合与测试课时作业: 这是一份2021学年第十二章 实数综合与测试课时作业,共20页。试卷主要包含了10的算术平方根是,下列各组数中相等的是,下列说法,的算术平方根是,关于的叙述,错误的是等内容,欢迎下载使用。