初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试习题
展开沪教版(上海)七年级数学第二学期第十二章实数同步练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法正确的是( )
A.的相反数是 B.2是4的平方根
C.是无理数 D.
2、若,则的值为( )
A. B. C. D.
3、下列判断:①10的平方根是±;②与互为相反数;③0.1的算术平方根是0.01;④()3=a;⑤=±a2.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
4、下列各数中,3.1415,,,0.321,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),无理数有( )
A.0个 B.1个 C.2个 D.3个
5、下列四个数中,最小的数是( )
A.﹣3 B.﹣ C.0 D.﹣π
6、下列整数中,与-1最接近的是( )
A.2 B.3 C.4 D.5
7、在,, 0, , , 0.010010001……, , -0.333…, , 3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )
A.2个 B.3个 C.4个 D.5个
8、下列说法正确的是( )
A.0.01是0.1的平方根
B.小于0.5
C.的小数部分是
D.任意找一个数,利用计算器对它开立方,再对得到的立方根进行开立方……如此进行下去,得到的数会越来越趋近1
9、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为( )
A.4 B.6 C.12 D.36
10、的相反数是( )
A.﹣ B. C. D.3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若,则x+1的平方根是 _____.
2、计算:__________.
3、若实数满足,则=_____________.
4、已知的小数部分是a,的整数部分是b,则a+b=_________.
5、已知(x﹣y+3)2+=0,则(x+y)2021=___.
三、解答题(10小题,每小题5分,共计50分)
1、已知是正数的两个平方根,且,求值,及的值.
2、已知x-2的平方根是±2,x+2y+7的立方根是3,求3x+y的算术平方根.
3、已知a、b互为倒数,c、d互为相反数,求-+(c+d)2+1的值.
4、计算:.
5、如图是一个无理数筛选器的工作流程图.
(1)当x为16时,y值为______;
(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;
(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况?
(4)当输出的y值是时,判断输入的x值是否唯一?如果不唯一,请写出其中的三个.
6、计算
7、求下列各数的平方根:
(1)121 (2) (3)(-13)2 (4)
8、计算:.
9、计算:.
10、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起.
(1)用xcm表示图中空白部分的面积;
(2)当x=5cm时空白部分面积为多少?
(3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?
-参考答案-
一、单选题
1、B
【分析】
根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案.
【详解】
解:A. 负数没有平方根,故无意义,A错误;
B.,故2是4的平方根,B正确;
C.是有理数,故C错误;
D. ,故D错误;
故选B.
【点睛】
本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.
2、B
【分析】
根据算术平方根、偶次方的非负性确定a和b的值,然后代入计算.
【详解】
解:,
,
,,
解得,,
所以.
故选:B
【点睛】
本题考查的是配方法的应用、非负数的性质,灵活运用配方法、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.
3、C
【分析】
根据平方根和算术平方根的概念,对每一个答案一一判断对错.
【详解】
解:①10的平方根是±,正确;
②是相反数,正确;
③0.1的算术平方根是,故错误;
④()3=a,正确;
⑤a2,故错误;
正确的是①②④,有3个.
故选:C.
【点睛】
本题考查了平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根.
4、D
【分析】
理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
3.1415,0.321是有限小数,属于有理数;
是分数,属于有理数;
无理数有,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),共3个.
故选:D.
【点睛】
此题考查了无理数.解题的关键是掌握实数的分类.
5、D
【分析】
正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断出各数中最小的是哪个即可.
【详解】
解:∵,,,,
∴,
∴最小的数是,
故选D.
【点睛】
此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
6、A
【分析】
先由无理数估算,得到,且接近3,即可得到答案.
【详解】
解:由题意,
∵,且接近3,
∴最接近的是整数2;
故选:A.
【点睛】
本题考查了无理数的估算,解题的关键是掌握无理数的概念,正确的得到接近3.
7、C
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:=1,=2,,3,
∴无理数有,,,2.010101…(相邻两个1之间有1个0)共4个.
故选:C.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
8、C
【分析】
根据平方根的定义,以及无理数的估算等知识点进行逐项分析判断即可.
【详解】
解:A、0.1是0.01的平方根,原说法错误,不符合题意;
B、由,得,原说法错误,不符合题意;
C、由,得,即的整数部分为4,则小数部分为,原说法正确,符合题意;
D、例如0和-1按此方法无限计算,结果仍为0和-1,并不是趋近于1,原说法错误,不符合题意;
故选:C.
【点睛】
本题考查平方根的定义,无理数的估算等,掌握实数的相关基本定义是解题关键.
9、D
【分析】
根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.
【详解】
解:∵一个正数a的两个不同平方根是2x-2和6-3x,
∴2x-2+6-3x=0,
解得:x=4,
∴2x-2=2×4-2=8-2=6,
∴正数a=62=36.
故选择D.
【点睛】
本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.
10、A
【分析】
根据只有符号不同的两个数互为相反数,可得一个数的相反数.
【详解】
解:的相反数是﹣,
故选:A.
【点睛】
此题主要考查相反数,解题的关键是熟知实数的性质.
二、填空题
1、
【分析】
根据平方根的定义求得的值,进而根据平方根的意义即可求得答案,平方根:如果一个数的平方等于,那么这个数就叫的平方根,其中属于非负数的平方根称之为算术平方根.立方根:如果一个数的立方等于,那么这个数叫做的立方根.
【详解】
解:∵
∴
,的平方根是
故答案为:
【点睛】
本题主要考查了平方根和立方根的定义,解决本题的关键是要熟练根据平方根的意义和平方根的定义进行求解.
2、3
【分析】
根据实数的运算法则即可求出答案.
【详解】
解:原式.
【点睛】
本题考查了实数的运算法则,掌握负整指数幂,零指数幂的运算性质是解本题的关键.
3、1
【分析】
根据绝对值与二次根式的非负性求出a,b的值,故可求解.
【详解】
解:∵
∴a-2=0,b-4=0
∴a=2,b=4
∴=
故答案为:1.
【点睛】
此题主要考查代数式求值,解题的关键是熟知非负性的运用.
4、
【分析】
先分别求出和的范围,得到a、b的值,再代入a+b计算即可.
【详解】
∵2<<3,2<<3,
∴a=−2,b=2,
a+b=−2+2=,
故答案为.
【点睛】
本题考查了估算无理数的大小,利用夹值法估算出和的范围是解此题的关键.
5、1
【分析】
由(x﹣y+3)2+=0,可得方程组,再解方程组,代入代数式计算即可得到答案.
【详解】
解: (x﹣y+3)2+=0,
解得:
故答案为:1
【点睛】
本题考查的是偶次方与算术平方根的非负性,掌握“若 则”是解题的关键.
三、解答题
1、, ,.
【分析】
根据正数的平方根有2个,且互为相反数,以及求出与的值即可.
【详解】
解:因为,是正数的两个平方根,可得:,
把代入,,解得:,
所以,
所以.
【点睛】
此题考查了平方根,明确一个正数的两个平方根互为相反数,和为0是解题的关键.
2、5
【分析】
根据题意直接利用平方根以及立方根的性质得出x,y的值,进而利用算术平方根的定义得出答案.
【详解】
解:∵x-2的平方根是±2,
∴x-2=4,
解得:x=6,
∵x+2y+7的立方根是3,
∴6+2×y+7=27,
解得:y=7,
∴3x+y=25,
∴3x+y的算术平方根是5.
【点睛】
本题主要考查平方根以及立方根的性质、算术平方根,正确得出x,y的值是解题的关键.
3、0
【分析】
互为倒数的两个数相乘等于1,互为相反数的两个数相加等于0,再把结果代入式子计算求解即可.
【详解】
解:根据题意得:ab=1,c+d=0,
则-+(c+d)2+1的值=-1+0+1=0.
【点睛】
本题考查倒数和相反数的性质应用,掌握理解他们是本题解题关键.
4、1
【分析】
根据平方根与立方根可直接进行求解.
【详解】
解:原式.
【点睛】
本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键.
5、
(1)
(2)0,1
(3)x<0
(4)x=3或x=9或x=81.
【分析】
(1)根据运算规则即可求解;
(2)根据0的算术平方根是0,即可判断;
(3)根据二次根式有意义的条件,被开方数是非负数即可求解;
(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.
(1)
解:当x=16时,,则y=;
故答案是:.
(2)
解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;
(3)
解:当x<0时,导致开平方运算无法进行;
(4)
解: x的值不唯一.x=3或x=9或x=81.
【点睛】
本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.
6、
【分析】
直接根据有理数的乘方,算术平方根,立方根以及绝对值的性质化简各项,再进行加减运算得出答案.
【详解】
解:
=
=
【点睛】
本题主要考查了实数的运算,正确化简各数是解题的关键.
7、 (1)±11; (2) ; (3)±13; (4)±8
【分析】
(1)直接根据平方根的定义求解;
(2)把带分数化成假分数,再根据平方根的定义求解;
(3)(4)先化简,再根据平方根的定义求解.
【详解】
含有乘方运算先求出它的幂,再开平方.
(1)因为(±11)2=121,所以121的平方根是±11;
(2),因为, 所以的平方根是;
(3)(-13)2=169,因为(±13)2=169,所以(-13)2的平方根是±13;
(4)-(-4)3=64,因为(±8)2=64,所以-(-4)3的平方根是±8.
【点睛】
本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.
8、
【分析】
根据有理数的乘方运算,有理数的乘方运算,化简绝对值,最后进行实数的混合运算即可
【详解】
解:原式.
【点睛】
本题考查了实数的混合运算,正确的计算是解题的关键.
9、7
【分析】
根据实数的性质化简即可求解.
【详解】
解:原式
【点睛】
此题主要考查实数的混合运算,解题的关键是熟知负指数幂的运算法则.
10、(1);(2);(3)13cm
【分析】
(1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;
(2)将x=5代入计算可得;
(3)根据题意列出方程求解即可.
【详解】
解:(1)空白部分面积为;
(2)当x=5时,空白部分面积为.
(3)根据题意得,,
解得x=13或-13(舍去),
所以,大正方形的边长为13cm
【点睛】
此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.
沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习,共1页。试卷主要包含了下列等式正确的是,关于的叙述,错误的是,的算术平方根是,的相反数是,下列判断等内容,欢迎下载使用。
数学七年级下册第十二章 实数综合与测试随堂练习题: 这是一份数学七年级下册第十二章 实数综合与测试随堂练习题,共1页。试卷主要包含了下列说法正确的是,下列各数是无理数的是,下列说法,若,则的值为,64的立方根为.等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步训练题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步训练题,共1页。试卷主要包含了3的算术平方根为,下列各式正确的是.,的算术平方根是,已知a=,b=-|-|,c=,64的立方根为.等内容,欢迎下载使用。