![2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数专题攻克试题(含解析)第1页](http://www.enxinlong.com/img-preview/2/3/12706100/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数专题攻克试题(含解析)第2页](http://www.enxinlong.com/img-preview/2/3/12706100/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数专题攻克试题(含解析)第3页](http://www.enxinlong.com/img-preview/2/3/12706100/0/3.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题,共1页。试卷主要包含了的算术平方根是,下列各组数中相等的是,下列各式正确的是.,观察下列算式,若,则整数a的值不可能为,下列说法中正确的有等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列判断:①10的平方根是±;②与互为相反数;③0.1的算术平方根是0.01;④()3=a;⑤=±a2.其中正确的有( )A.1个 B.2个 C.3个 D.4个2、下列说法正确的是( )A.是的平方根 B.是的算术平方根 C.2是-4的算术平方根 D.的平方根是它本身3、下列说法正确的是( )A.的相反数是 B.2是4的平方根C.是无理数 D.4、的算术平方根是( )A. B. C. D.5、下列各组数中相等的是( )A.和3.14 B.25%和 C.和0.625 D.13.2%和1.326、下列各式正确的是( ).A. B.C. D.7、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为2810的末位数字是( )A.2 B.4 C.8 D.68、若,则整数a的值不可能为( )A.2 B.3 C.4 D.59、下列说法中正确的有( )①±2都是8的立方根 ②=x③的平方根是3 ④﹣=2.A.1个 B.2个 C.3个 D.4个10、下列四个数中,最小的数是( )A.﹣3 B.﹣ C.0 D.﹣π第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知(x﹣y+3)2+=0,则(x+y)2021=___.2、计算____________;3、比较大小:﹣|﹣4|______﹣π.(填“>”、“=”或“<”)4、如果,那么=_____.5、一个正数的两个平方根分别是,则这个正数是_____.三、解答题(10小题,每小题5分,共计50分)1、解方程:(1)4(x﹣1)2=36;(2)8x3=27.2、大家知道是无理数,而无理数是无限不循环小数.因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分.理由是:对于正无理数,用本身减去其整数部分,差就是其小数部分.因为的整数部分为1,所以的小数部分为.参考小燕同学的做法,解答下列问题:(1)写出的小数部分为________;(2)已知与的小数部分分别为a和b,求a2+2ab+b2的值;(3)如果,其中x是整数,0<y<1,那么=________(4)设无理数(m为正整数)的整数部分为n,那么的小数部分为________(用含m,n的式子表示).3、计算:(π-4)0+|-6|-+4、已知:,求x+17的算术平方根.5、如果一个自然数的个位数字不为,且能分解成,其中与都是两位数,与的十位数字相同,个位数字之和为,则称数为“风雨数”,并把数分解成的过程,称为“同行分解”.例如:,和的十位数字相同,个位数字之和为,是“风雨数”.又如:,和的十位数字相同,但个位数字之和不等于,不是“风雨数”.(1)判断,是否是“风雨数”?并说明理由;(2)把一个“风雨数”进行“同行分解”,即,与之和记为,与差的绝对值记为,令,当能被整除时,求出所有满足条件的.6、计算:.7、已知x,y满足,求x、y的值.8、计算:.9、如图,将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:(1)根据图中条件,请用两种方法表示该图形的总面积(用含a、b的代数式表示出来);(2)如果图中的a,b(a>b)满足a2+b2=57,ab=12,求a+b的值.10、计算:. -参考答案-一、单选题1、C【分析】根据平方根和算术平方根的概念,对每一个答案一一判断对错.【详解】解:①10的平方根是±,正确;②是相反数,正确;③0.1的算术平方根是,故错误;④()3=a,正确;⑤a2,故错误;正确的是①②④,有3个.故选:C.【点睛】本题考查了平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根.2、A【分析】根据平方根的定义及算术平方根的定义解答.【详解】解:A、是的平方根,故该项符合题意;B、4是的算术平方根,故该项不符合题意;C、2是4的算术平方根,故该项不符合题意;D、1的平方根是,故该项不符合题意;故选:A.【点睛】此题考查了平方根的定义及算术平方根的定义,熟记定义是解题的关键.3、B【分析】根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案.【详解】解:A. 负数没有平方根,故无意义,A错误;B.,故2是4的平方根,B正确;C.是有理数,故C错误;D. ,故D错误; 故选B.【点睛】本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.4、A【分析】根据算术平方根的定义即可完成.【详解】∵ ∴的算术平方根是 即 故选:A【点睛】本题考查了算术平方根的计算,掌握算术平方根的定义是关键.5、B【分析】是一个无限不循环小数,约等于3.142,3.142>3.14,即>3.14;=1÷4=0.25,把0.25的小数点向右移动两位添上百分号就是25%;即25%=;=3÷8=0.375,0.375<0.625,即<0.625;把13.2%小数点向左移动两位去掉百分号就是0.132,0.132<1.32,即13.2%<1.32.【详解】解:A 、≈3.142,3.142>3.14,即>3.14;B 、=1÷4=0.25=25%=;C 、=3÷8=0.375,0.375<0.625,即<0.625;D 、13.2%=0.132,0.132<1.32,即13.2%<1.32.故选:B.【点睛】此题主要是考查小数、分数、百分数的互化及圆周率的限值.小数、分数、百分数、无限小数(循环小数)的大小比较,通常都化成保留一定位数的小数,再根据小数的大小比较方法进行比较,这样可以省去通分的麻烦.6、D【分析】一个整数有两个平方根,这两个平方根互为相反数;如果一个数的立方等于,那么这个数叫做的立方根;据此可得结论.【详解】解:A、,原式错误,不符合题意;B、,原式错误,不符合题意;C、,原式错误,不符合题意;D、,原式正确,符合题意;故选:D.【点睛】本题考查了立方根,平方根,算数平方根,熟练掌握相关概念是解本题的关键.7、B【分析】经过观察如果2的次数除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6.用810÷4=202…2,余数是2故可知,末尾数是4.【详解】2n的个位数字是2,4,8,6循环,所以810÷4=202…2,则2810的末位数字是4.故选:B.【点睛】本题考查了与实数运算相关的规律题,找到2n的末位数的循环规律是解题的关键.8、D【分析】首先确定和的范围,然后求出整式a可能的值,判断求解即可.【详解】解:∵,即,,即,又∵,∴整数a可能的值为:2,3,4,∴整数a的值不可能为5,故选:D.【点睛】此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.9、B【分析】根据平方根和立方根的定义进行判断即可.【详解】解:①2是8的立方根,-2不是8的立方根,原说法错误;②=x,正确;③,9的平方根是3,原说法错误;④﹣=2,正确;综上,正确的有②④共2个,故选:B.【点睛】本题考查了立方根,平方根,熟练掌握立方根的定义是解本题的关键.10、D【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断出各数中最小的是哪个即可.【详解】解:∵,,,,∴,∴最小的数是,故选D.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.二、填空题1、1【分析】由(x﹣y+3)2+=0,可得方程组,再解方程组,代入代数式计算即可得到答案.【详解】解: (x﹣y+3)2+=0, 解得: 故答案为:1【点睛】本题考查的是偶次方与算术平方根的非负性,掌握“若 则”是解题的关键.2、-3【分析】根据立方根、算术平方根可直接进行求解.【详解】解:原式=;故答案为-3.【点睛】本题主要考查立方根、算术平方根,熟练掌握求一个数的立方根及算术平方根是解题的关键.3、【分析】先化简绝对值,再根据实数的大小比较法则即可得.【详解】解:,因为,所以,即,故答案为:.【点睛】本题考查了绝对值、实数的大小比较,熟练掌握实数的大小比较法则是解题关键.4、【分析】本题可利用立方根的定义直接求解.【详解】∵,∴.故填:.【点睛】本题考查立方根的定义:如果一个数的立方等于a,则这个数称为a的立方根使用时和平方根定义对比记忆.5、49【分析】根据一个正数有两个平方根,这两个平方根互为相反数,可得2a-1+5-3a=0,据此求出a的值是多少,进而求出这个正数是多少即可.【详解】解:根据题意,得:2a-1+5-3a=0,解得a=4,∴2a-1=2×4-1=7,则这个正数为72=49,故答案为:49.【点睛】本题考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.三、解答题1、(1)x=4或﹣2;(2)x=【分析】(1)先变形为(x﹣1)2=9,然后求9的平方根即可;(2)先变形为x3=,再利用立方根的定义得到答案.【详解】解:(1)方程两边除以4得,(x﹣1)2=9,∴x﹣1=±3,∴x=4或﹣2;(2)方程两边除以8得,x3=,所以x=.【点睛】本题考查了平方根、立方根的运算,熟练掌握运算法则是解本题的关键.2、(1);(2)1;(3);(4)【分析】(1)由题意易得,则有的整数部分为3,然后问题可求解;(2)由题意易得,则有,,然后可得,然后根据完全平方公式可进行求解;(3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;(4)根据题意可直接进行求解.【详解】解:(1)∵,∴的整数部分为3,∴的小数部分为;故答案为;(2)∵,∴,,∵与的小数部分分别为a和b,∴,∴;(3)由可知,∵,∴的小数部分为,∵x是整数,0<y<1,∴,∴;故答案为;(4)∵无理数(m为正整数)的整数部分为n,∴的小数部分为,∴的小数部分即为的小数部分加1,为;故答案为.【点睛】本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.3、9【分析】根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解.【详解】解:原式【点睛】本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键.4、3【分析】首先根据,求出x的值,然后代入x+17求解算术平方根即可.【详解】解:∵,∴5x+32=-8,解得:x=-8,∴x+17=-8+17=9,∵9的算术平方根为3,∴x+17的算术平方根为 3,故答案为:3.【点睛】此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念.5、(1)195是“风雨数”,621不是“风雨数”,理由见解析;;(2)或或或【分析】根据新定义的“风雨数”即可得出答案;设的十位数为,个位数为,则为,根据能被整除求出的可能的值,再由的值求出的值即可得出答案.【详解】解:,且,是“风雨数”,,,不是“风雨数”;设,则,,,能被整除,,为整数,,是的倍数,满足条件的有,,若,则,为整数,,是的因数,,,,,满足条件的有,,,,,或,或,或,,或,若,则,为整数,,是的因数,,,,,,,,,满足条件的有,,,,,或,或,或,,或,综上,的值为或或或.【点睛】本题是新定义题,主要考查了列代数式,一元一次方程的应用,关键是准确理解“风雨数”含义,能把和用含和的式子表示出来.6、1【分析】直接利用零指数幂的性质以及立方根的性质、负整数指数幂的性质、有理数的乘方运算法则分别化简,再利用有理数的加减运算法则计算得出答案.【详解】解:=1+3﹣2﹣1=1.【点睛】本题主要考查了实数的混合运算,熟练掌握相关运算法则是解答本题的关键.7、x=5;y=2【分析】根据非负数的性质可得关于x、y的方程组,求解可得其值;【详解】解:由题意可得,联立得 ,解方程组得:,∴x、y的值分别为5、2.【点睛】此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.8、1【分析】分别根据数的开方法则、0指数幂及负整数指数幂的计算法则计算出各数,再进行加减运算即可.【详解】解:【点睛】本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的计算法则是解答此题的关键.9、(1)或;(2)9【分析】(1)由大正方形的边长为可得面积,由大正方形由两个小正方形与两个长方形组成,可利用面积和表示大正方形的面积,从而可得答案;(2)由(1)可得:再把a2+b2=57,ab=12,利用平方根的含义解方程即可.【详解】解:(1) 大正方形的边长为 大正方形由两个小正方形与两个长方形组成, (2)由(1)得: a2+b2=57,ab=12, 则 【点睛】本题考查的是完全平方公式的几何背景,利用平方根的含义解方程,掌握“完全平方公式在几何图形中的应用”是解本题的关键.10、7【分析】根据实数的性质化简即可求解.【详解】解:原式【点睛】此题主要考查实数的混合运算,解题的关键是熟知负指数幂的运算法则.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习,共20页。试卷主要包含了已知a=,b=-|-|,c=,可以表示,关于的叙述,错误的是,下列说法正确的是,有一个数值转换器,原理如下等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习,共20页。试卷主要包含了下列说法正确的是,计算2﹣1+30=,下列各数是无理数的是,实数﹣2的倒数是,下列说法中错误的是,0.64的平方根是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习,共1页。试卷主要包含了下列等式正确的是,关于的叙述,错误的是,的算术平方根是,的相反数是,下列判断等内容,欢迎下载使用。