终身会员
搜索
    上传资料 赚现金
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数专题攻克试题(无超纲)
    立即下载
    加入资料篮
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数专题攻克试题(无超纲)01
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数专题攻克试题(无超纲)02
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数专题攻克试题(无超纲)03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十二章 实数综合与测试同步训练题

    展开
    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试同步训练题,共1页。试卷主要包含了下列语句正确的是,下列各数是无理数的是,下列整数中,与-1最接近的是,下列等式正确的是.,的相反数是等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数专题攻克

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、在﹣3,0,2,这组数中,最小的数是(  )

    A. B.﹣3 C.0 D.2

    2、下列说法正确的是(  )

    A.是分数

    B.0.1919919991…(每相邻两个1之间9的个数逐次加1)是有理数

    C.﹣3x2y+4x﹣1是三次三项式,常数项是1

    D.单项式﹣的次数是2,系数为﹣

    3、若 ,则   

    A. B. C. D.

    4、下列语句正确的是(  )

    A.8的立方根是2 B.﹣3是27的立方根

    C.的立方根是± D.(﹣1)2的立方根是﹣1

    5、下列各数是无理数的是(   

    A.-3 B. C.2.121121112 D.

    6、下列整数中,与-1最接近的是(   

    A.2 B.3 C.4 D.5

    7、下列等式正确的是(    ).

    A. B. C. D.

    8、的相反数是(  )

    A. B. C. D.

    9、一个正数的两个平方根分别是2a,则a的值为(   

    A.1 B.﹣1 C.2 D.﹣2

    10、下列实数比较大小正确的是(  

    A. B. C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、的算术平方根是_____,的立方根是_____,的倒数是_____.

    2、比较大小: _____ (填“<”或“>”符号)

    3、若ab为实数,且满足|a-3|+=0,则a-b的值为_____

    4、绝对值不大于4且不小于的整数分别有______.

    5、设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,

    (1)[﹣3.9)=______.

    (2)下列结论中正确的是______(填写所有正确结论的序号)

    ①[0)=0;

    ②[x)﹣x的最小值是0;

    ③[x)﹣x的最大值是1;

    ④存在实数x,使[x)﹣x=0.5成立.

    三、解答题(10小题,每小题5分,共计50分)

    1、计算:

    (1)

    (2)

    2、计算:

    3、(1)计算:(﹣)×(﹣1)2021+

    (2)求x的值:(3x+2)3﹣1=

    4、如图1,依次连接2×2方格四条边的中点,得到一个阴影正方形,设每一方格的边长为1个单位,则这个阴影正方形的边长为

    (1)图1中阴影正方形的边长为      ;点P表示的实数为      

    (2)如图2,在4×4方格中阴影正方形的边长为a.

    ①写出边长a的值.

    ②请仿照(1)中的作图在数轴上表示实数﹣a+1.

    5、已知x-2的平方根是±2,x+2y+7的立方根是3,求3xy的算术平方根.

    6、如图:在数轴上A点表示数aB点表示数bC点表示数c,且ab满足|a+3|+(b﹣9)2=0,c=1.

    (1)a     b     

    (2)点P为数轴上一动点,其对应的数为x,则当x     时,代数式|xa|﹣|xb|取得最大值,最大值为      

    (3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为tt≤8)秒,求第几秒时,点PQ之间的距离是点BQ之问距离的2倍?

    7、求下列各式中的x

    (1)

    (2)

    8、计算

    (1)

    (2)

    9、阅读下列材料:

    的整数部分为3,小数部分为

    请你观察上述的规律后试解下面的问题:如果的整数部分为的小数部分为,求的值.

    10、求下列各数的平方根:

    (1)121            (2)            (3)(-13)2                 (4)

     

    -参考答案-

    一、单选题

    1、B

    【分析】

    先确定3与的大小,再确定四个数的大小顺序,由此得到答案.

    【详解】

    解:∵9>7,

    ∴3>

    ∴-3<

    ∴-3<<0<2,

    故选:B

    【点睛】

    此题考查了实数的估值,实数的大小比较,正确掌握实数的估值计算是解题的关键.

    2、D

    【分析】

    根据有理数的定义、单项式次数和系数的定义,多项式的定义进行逐一判断即可.

    【详解】

    解:A、是无限不循环小数,不是分数,故此选项不符合题意;

    B、0.1919919991…(每相邻两个1之间9的个数逐次加1)是无限不循环小数,不是有理数,故此选项不符合题意;

    C、﹣3x2y+4x﹣1是三次三项式,常数项是-1,故此选项不符合题意;

    D、单项式﹣的次数是2,系数为﹣,故此选项符合题意;

    故选D.

    【点睛】

    本题主要考查了有理数的定义、单项式次数和系数的定义,熟知定义是解题的关键:有理数是整数和分数的统称;表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.

    3、B

    【分析】

    先利用的值,求出,再利用负整数指数幂的运算法则,得到的值.

    【详解】

    解:

    (舍去),

    故选:B.

    【点睛】

    本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:,是解决本题的关键.

    4、A

    【分析】

    利用立方根的运算法则,进行判断分析即可.

    【详解】

    解:A、8的立方根是2,故A正确.

    B、3是27的立方根,故B错误.

    C、的立方根是,故C错误.

    D、(﹣1)2的立方根是1,故D错误.

    故选:A.

    【点睛】

    本题主要是考查了立方根的运算,注意一个数的立方根只有一个,不是以相反数形式存在的.

    5、D

    【分析】

    根据无理数的定义:无限不循环小数统称为无理数,判断上面四个数是否为无理数即可.

    【详解】

    A、-3是整数,属于有理数.

    B、是分数,属于有理数.

    C、2.121121112是有限小数,属于有理数.

    D、是无限不循环小数,属于无理数.

    故选:D.

    【点睛】

    本题主要是考察无理数的概念,初中数学中常见的无理数主要是:等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.

    6、A

    【分析】

    先由无理数估算,得到,且接近3,即可得到答案.

    【详解】

    解:由题意,

    ,且接近3,

    最接近的是整数2;

    故选:A.

    【点睛】

    本题考查了无理数的估算,解题的关键是掌握无理数的概念,正确的得到接近3.

    7、由不等式的性质可知:5-2<−2<6-2,即3<−2<

    故选:C.

    【点睛】

    本题主要考查的是估算无理数的大小,明确被开方数越大对应的算术平方根也越大是解题的关键.

    4.C

    【分析】

    分别利用平方根和算术平方根以及立方根得出各选项是否正确即可.

    【详解】

    解:A,故此选项错误;

    B,故此选项错误;

    C、由B得此选项正确;

    D,故此选项错误.

    故选:C

    【点睛】

    此题主要考查了立方根、平方根、算术平方根等知识,正确把握各定义是解题关键.

    8、B

    【分析】

    直接根据相反数的定义(只有符号不同的两个数互为相反数)进行求解即可.

    【详解】

    解:的相反数是

    故选:B.

    【点睛】

    本题主要考查相反数的定义,熟练掌握相反数的定义是解题的关键.

    9、D

    【分析】

    根据正数有两个平方根,且互为相反数,即可求解.

    【详解】

    解:根据题意得:

    解得:

    故选:D

    【点睛】

    本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的关键.

    10、D

    【分析】

    根据有理数比较大小的法则对各选项进行比较即可.

    【详解】

    解:A、1>-4,故本选项错误;

    B、-1000<-0.001,故本选项错误;

    C,故本选项错误;

    D,故本选项正确;

    故选:D.

    【点睛】

    本题考查的是实数的大小比较,即正数都大于0;负数都小于0;正数大于一切负数; 两个负数,绝对值大的其值反而小.

    二、填空题

    1、9

    【分析】

    根据相反数,算术平方根,立方根,平方根,倒数,绝对值的定义求出即可.

    【详解】

    解:=81的算术平方根是9,=的立方根是的倒数是

    故答案为:-9,

    【点睛】

    本题考查了算术平方根,立方根,平方根,倒数等知识点的应用,主要考查学生的理解能力和计算能力.

    2、>

    【分析】

    根据实数比较大小的方法判断即可.

    【详解】

    ∵正数大于一切负数,

    故答案为:>.

    【点睛】

    此题主要考查实数的大小比较,熟练掌握实数比较大小的方法是解题的关键.

    3、2

    【分析】

    根据非负性的性质解答,当两个非负数相加,和为0时,必须满足其中的每一项都等于0.

    【详解】

    解:∵|a-3|+=0,

    a-3=0,b-1=0,

    a=3,b=1,

    a-b=3-1=2.

    故答案为2.

    【点睛】

    本题考查了非负数的性质,涉及绝对值的性质,算术平方根的性质,有理数的减法.掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.

    4、4

    【分析】

    根据绝对值的意义及实数的大小比较可直接进行求解.

    【详解】

    解:由绝对值不大于4且不小于的整数分别有4和

    故答案为4和

    【点睛】

    本题主要考查绝对值的意义及实数的大小比较,熟练掌握绝对值的意义及实数的大小比较是解题的关键.

    5、-3;    ③④   

    【分析】

    (1)利用题中的新定义判断即可.

    (2)根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.

    【详解】

    (1)表示大于-3.9的最小整数为-3,所以[﹣3.9)=-3

    (2)解: ①[0)=1,故本项错误;

    ②[x)−x>0,但是取不到0,故本项错误;

    ③[x)−x⩽1,即最大值为1,故本项正确;

    ④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.

    ∴正确的选项是:③④;

    故答案为:③④.

    【点睛】

    此题考查了实数的运算,理解新定义实数的运算法则是解本题的关键.

    三、解答题

    1、(1)5;(2)

    【分析】

    (1)分别求解算术平方根与立方根,再进行加减运算即可;

    (2)按照多项式除以单项式的法则:把多项式的每一项分别除以单项式,再把所得的商相加,从而可得答案.

    【详解】

    解:(1)

    (2)

    【点睛】

    本题考查的是求解一个数的算术平方根与立方根,多项式除以单项式,掌握基础运算是解本题的关键.

    2、1

    【分析】

    分别根据数的开方法则、0指数幂及负整数指数幂的计算法则计算出各数,再进行加减运算即可.

    【详解】

    解:

    【点睛】

    本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的计算法则是解答此题的关键.

    3、(1);(2)

    【分析】

    (1)先计算乘方、立方根和算术平方根,再计算加减法即可得;

    (2)利用立方根解方程即可得.

    【详解】

    解:(1)原式

    (2)

    【点睛】

    本题考查了立方根、算术平方根、利用立方根解方程等知识点,熟练掌握各运算法则是解题关键.

    4、(1),1+;(2)①;②见解析

    【分析】

    (1)先利用大正方形的面积减去四个三角形的面积可得正方形ABCD的面积,再求其算术平方根即可得;

    (2)①先利用大正方形的面积减去四个三角形的面积可得阴影部分正方形的面积,再求其算术平方根即可得;

    ②由数轴上表示1的点为圆心画弧,与数轴负半轴的交点表示的数即为

    【详解】

    解:(1)正方形ABCD的面积为:

    正方形ABCD的边长为:

    由题意得:点表示的实数为:

    故答案为:

    (2)①阴影部分正方形面积为:

    求其算术平方根可得:

    ②如图所示:

    表示的数即为

    【点睛】

    本题考查了割补法求面积以及实数与数轴等知识,熟练掌握割补法求面积是解题的关键.

    5、5

    【分析】

    根据题意直接利用平方根以及立方根的性质得出xy的值,进而利用算术平方根的定义得出答案.

    【详解】

    解:∵x-2的平方根是±2,

    x-2=4,

    解得:x=6,

    x+2y+7的立方根是3,

    ∴6+2×y+7=27,

    解得:y=7,

    ∴3xy=25,

    ∴3xy的算术平方根是5.

    【点睛】

    本题主要考查平方根以及立方根的性质、算术平方根,正确得出xy的值是解题的关键.

    6、(1)﹣3,9;(2)≥9,12;(3)秒或秒.

    【分析】

    (1)由|a+3|+(b﹣9)2=0,根据非负数的性质得|a+3|=0,(b﹣9)2=0,即可求出a=﹣3、b=9;

    (2)由(1)得a=﹣3、b=9,则代数式|xa|﹣|xb|即代数式|x+3|﹣|x﹣9|,按x<﹣3、﹣3≤x<9及x≥9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;

    (3)先由点C表示的数是1,点B表示的数是9,计算出BC两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可.

    【详解】

    解:(1)∵|a+3|≥0,(b﹣9)2≥0,且|a+3|+(b﹣9)2=0,

    ∴|a+3|=0,(b﹣9)2=0,

    a=﹣3,b=9,

    故答案为:﹣3,9.

    (2)∵a=﹣3,b=9,

    ∴代数式|xa|﹣|xb|即代数式|x+3|﹣|x﹣9|,

    x<﹣3时,|x+3|﹣|x﹣9|=﹣(x+3)﹣(9﹣x)=﹣12;

    当﹣3≤x<9时,|x+3|﹣|x﹣9|=x+3﹣(9﹣x)=2x﹣6,

    ∵﹣12≤2x﹣6<12,

    ∴﹣12≤|x+3|﹣|x﹣9|<12;

    x≥9时,|x+3|﹣|x﹣9|=x+3﹣(x﹣9)=12,

    综上所述,|x+3|﹣|x﹣9|的最大值为12,

    故答案为:≥9,12.

    (3)∵点C表示的数是1,点B表示的数是9,

    BC两点之间的距离是9﹣1=8,

    当点Q与点C重合时,则2t=8,

    解得t=4,

    当0<t≤4时,如图1,点P表示的数是﹣3﹣t,点Q表示的数是9﹣2t

    根据题意得9﹣2t﹣(﹣3﹣t)=2×2t

    解得t

    当4<t≤8时,如图2,点P表示的数仍是﹣3﹣t

    ∵1+(2t﹣8)=2t﹣7,

    ∴点Q表示的数是2t﹣7,

    根据题意得2t﹣7﹣(﹣3﹣t)=2(16﹣2t),

    解得t

    综上所述,第秒或第秒,点PQ之间的距离是点BQ之间距离的2倍.

    【点睛】

    本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键.

    7、

    (1)

    (2)

    【分析】

    (1)根据平方根定义开方,求出两个方程的解即可;

    (2)先移项,再根据立方根定义得出一个一元一次方程,求出方程的解即可.

    (1)

    开平方得,

    解得,

    (2)

    移项得,

    方程两边同除以8,得,

    开立方,得,

    【点睛】

    本题考查了平方根和立方根的应用,主要考查学生的理解能力和计算能力.

    8、(1);(2)

    【分析】

    (1)利用完全平方公式,平方差公式展开,合并同类项即可;

    (2)根据幂的意义,算术平方根,立方根的定义计算.

    【详解】

    (1)

    (2)

    =

    =

    【点睛】

    本题考查了完全平方公式,平方差公式,算术平方根即一个数的正的平方根,立方根如果一个数的立方等于a,则这个数叫做a的立方根;熟练掌握公式,正确理解算术平方根,立方根的定义是解题的关键.

    9、a+b的值为25+

    【分析】

    由9π≈28.26,可得其整数部分a=28,由27<28<64,可求得的小数部分,继而可得a+b的值.

    【详解】

    解:∵9π≈28.26,

    a=28,

    ∵27<28<64,

    ∴3<<4,

    b=-3,

    a+b=28+-3=25+

    a+b的值为25+

    【点睛】

    本题主要考查了估算无理数的大小,根据题意估算出ab的值是解答此题的关键.

    10、 (1)±11; (2) ; (3)±13; (4)±8

    【分析】

    (1)直接根据平方根的定义求解;

    (2)把带分数化成假分数,再根据平方根的定义求解;

    (3)(4)先化简,再根据平方根的定义求解.

    【详解】

    含有乘方运算先求出它的幂,再开平方.

    (1)因为(±11)2=121,所以121的平方根是±11;

    (2),因为, 所以的平方根是

    (3)(-13)2=169,因为(±13)2=169,所以(-13)2的平方根是±13;

    (4)-(-4)3=64,因为(±8)2=64,所以-(-4)3的平方根是±8.

    【点睛】

    本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.

     

    相关试卷

    七年级下册第十二章 实数综合与测试同步测试题: 这是一份七年级下册第十二章 实数综合与测试同步测试题,共20页。试卷主要包含了下列各数中,比小的数是,如果a,9的平方根是,的算术平方根是,0.64的平方根是,下列说法正确的是等内容,欢迎下载使用。

    2021学年第十二章 实数综合与测试课时作业: 这是一份2021学年第十二章 实数综合与测试课时作业,共20页。试卷主要包含了10的算术平方根是,下列各组数中相等的是,下列说法,的算术平方根是,关于的叙述,错误的是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题,共19页。试卷主要包含了下列语句正确的是,已知a=,b=-|-|,c=,可以表示,下列说法正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map