搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年京改版八年级数学下册第十五章四边形必考点解析试题(精选)

    2021-2022学年京改版八年级数学下册第十五章四边形必考点解析试题(精选)第1页
    2021-2022学年京改版八年级数学下册第十五章四边形必考点解析试题(精选)第2页
    2021-2022学年京改版八年级数学下册第十五章四边形必考点解析试题(精选)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试巩固练习

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试巩固练习,共27页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是轴对称图形又是中心对称图形的是(  )A. B. C. D.2、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是(   A. B. C. D.3、如图,四边形ABCD中,∠A=60°,AD=2,AB=3,点MN分别为线段BCAB上的动点(含端点,但点M不与点B重合),点EF分别为DMMN的中点,则EF长度的最大值为( )A. B. C. D.4、下列图形中,不是中心对称图形的是(    A. B. C. D.5、如图,在矩形ABCD中,点O为对角线BD的中点,过点O作线段EFADF,交BCEOBEB,点GBD上一点,满足EGFG,若∠DBC=30°,则∠OGE的度数为(  )
    A.30° B.36° C.37.5° D.45°6、下列命题是真命题的是(    A.五边形的内角和是720° B.三角形的任意两边之和大于第三边C.内错角相等 D.对角线互相垂直的四边形是菱形7、下列图形中,可以看作是中心对称图形的是(    A. B.C. D.8、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BICD,过点CCJDE于点J,交AB于点K.设正方形ACHI的面积为S1,正方形BCGF的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:①BICD;②2SACDS1;③S1S4S2S3;④.其中正确的结论有(    A.1个 B.2个 C.3个 D.4个9、如图,在平面直角坐标系中,点Ax轴正半轴上的一个动点,点Cy轴正半轴上的点,于点C.已知.点B到原点的最大距离为(    A.22 B.18 C.14 D.1010、如图,在中,∠ACB=90°,AB=10,CDAB边上的中线,则CD的长是(    A.20 B.10 C.5 D.2第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,对角线ACBD相交于OEF过点O分别交ABCDEF,已知AB=8cm,AD=5cm,那么图中阴影部分面积为_____cm22、如图,将长方形ABCD按图中方式折叠,其中EFEC为折痕,折叠后E在一直线上,已知∠BEC=65°,那么∠AEF的度数是_____.3、如果一个矩形较短的边长为5cm,两条对角线的夹角为60°,则这个矩形的对角线长是_________cm.4、一个正多边形的每一个内角比每一个外角的5倍还小60°,则这个正多边形的边数为__________.5、如图,将矩形ABCD折叠,使点C与点A重合,折痕为EF.若AF=5,BF=3,则AC的长为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,把矩形纸片放入直角坐标系中,使分别落在x轴,y轴的正半轴上,连接,且(1)求所在直线的解析式;(2)将纸片折叠,使点A与点C重合(折痕为),求折叠后纸片重叠部分的面积;(3)若过一定点M的任意一条直线总能把矩形的面积分为相等的两部分,则点M的坐标为________.2、已知:▱ABCD的对角线ACBD相交于OMAO的中点,NCO的中点,求证:BMDNBM=DN
     3、如图,四边形ABCD为平行四边形,∠BAD的平分线AFCD于点E,交BC的延长线于点F.点E恰是CD的中点.求证:(1)△ADE≌△FCE(2)BEAF4、如图,四边形ABCD是正方形,BEBFBEBFEFBC交于点G(1)求证:AECF(2)若∠ABE=62°,求∠GFC+∠BCF的值.5、如图,已知正方形中,点是边延长线上一点,连接,过点,垂足为点交于点(1)求证:(2)若,求 BG的长. -参考答案-一、单选题1、D【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
     B.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    C.是轴对称图形,不是中心对称图形,故本选项符合题意;
    D.既是轴对称图形,又是中心对称图形,故本选项不符合题意.
    故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.【详解】解:A、不是中心对称图形,故A错误.B、不是中心对称图形,故B错误.C、是中心对称图形,故C正确.D、不是中心对称图形,故D错误.故选:C.【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.3、A【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为NB重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值. 连接DB,过点DDHABAB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:∵ED=EMMF=FNEF=DNDN最大时,EF最大, NB重合时DN=DB最大,Rt△ADH中, ∵∠A=60° AH=2×=1,DH=BH=ABAH=3﹣1=2, DB=EFmax=DB=EF的最大值为故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键.4、C【详解】解:选项A是中心对称图形,故A不符合题意;选项B是中心对称图形,故B不符合题意;选项C不是中心对称图形,故C符合题意;选项D是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是中心对称图形的识别,掌握“中心对称图形的定义判断中心对称图形”是解本题的关键,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形.5、C【分析】根据矩形和平行线的性质,得;根据等腰三角形和三角形内角和性质,得;根据全等三角形性质,通过证明,得;根据直角三角形斜边中线、等腰三角形、三角形内角和性质,推导得,再根据余角的性质计算,即可得到答案.【详解】∵矩形ABCD OBEB ∵点O为对角线BD的中点, EGFG,即 故选:C.【点睛】本题考查了矩形、平行线、全等三角形、等腰三角形、三角形内角和、直角三角形的知识;解题的关键是熟练掌握矩形、全等三角形、等腰三角形、直角三角形斜边中线的性质,从而完成求解.6、B【分析】利用多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定分别判断后即可确定正确的选项.【详解】解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;D、对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定等知识,难度不大.7、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.8、C【分析】根据SAS证△ABI≌△ADC即可得证①正确,过点BBMIA,交IA的延长线于点M,根据边的关系得出SABIS1,即可得出②正确,过点CCNDADA的延长线于点N,证S1S3即可得证③正确,利用勾股定理可得出S1+S2S3+S4,即能判断④不正确.【详解】解:①∵四边形ACHI和四边形ABED都是正方形,AIACABAD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB即∠IAB=∠CAD在△ABI和△ADC中,∴△ABI≌△ADCSAS),BICD故①正确;②过点BBMIA,交IA的延长线于点M∴∠BMA=90°,∵四边形ACHI是正方形,AIAC,∠IAC=90°,S1AC2∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四边形AMBC是矩形,BMACSABIAIBMAIACAC2S1由①知△ABI≌△ADCSACDSABIS1即2SACDS1故②正确;③过点CCNDADA的延长线于点N∴∠CNA=90°,∵四边形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3ADAK∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四边形AKCN是矩形,CNAKSACDADCNADAKS3即2SACDS3由②知2SACDS1S1S3在Rt△ACB中,AB2BC2+AC2S3+S4S1+S2又∵S1S3S1+S4S2+S3  即③正确;④在Rt△ACB中,BC2+AC2AB2S3+S4S1+S2故④错误;综上,共有3个正确的结论,故选:C.【点睛】本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键.9、B【分析】首先取AC的中点E,连接BEOEOB,可求得OEBE的长,然后由三角形三边关系,求得点B到原点的最大距离.【详解】解:取AC的中点E,连接BEOEOB∵∠AOC=90°,AC=16,OECEAC=8,BCACBC=6,BE10,若点OEB不在一条直线上,则OBOE+BE=18.若点OEB在一条直线上,则OBOE+BE=18,∴当OEB三点在一条直线上时,OB取得最大值,最大值为18.故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10、C【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半,即可求出CD的长.【详解】解:∵在中,AB=10,CDAB边上的中线故选:C.【点睛】本题考查了直角三角形斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.二、填空题1、10【分析】利用矩形性质,求证,将阴影部分的面积转为的面积,最后利用中线平分三角形的面积,求出的面积,即可得到阴影部分的面积.【详解】解:四边形为矩形,中,阴影部分的面积最后转化为了的面积,中,平分阴影部分的面积:故答案为:10.【点睛】本题主要是考查了矩形的性质以全等三角形的判定与性质以及中线平分三角形面积,熟练利用矩形性质,证明三角形全等,将阴影部分面积转化为其他图形的面积,这是解决本题的关键.
     2、25°【分析】利用翻折变换的性质即可解决.【详解】解:由折叠可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案为:25°.【点睛】本题考查了折叠的性质,熟练掌握折叠的性质是解题的关键.3、10【分析】如图,由题意得:四边形为矩形,证明是等边三角形,结合矩形的性质可得答案.【详解】解:如图,由题意得:四边形为矩形, 是等边三角形, 故答案为:【点睛】本题考查的是等边三角形的判定与性质,矩形的性质,掌握“矩形的对角线相等且互相平分”是解本题的关键.4、9【分析】设正多边形的外角为x度,则可用代数式表示出内角,再由内角与外角互补的关系得到方程,解方程即可求得每一个外角,再根据多边形的外角和为360度即可求得正多边形的边数.【详解】设正多边形的外角为x度,则内角为(5x−60)度由题意得:解得:则正多边形的边数为:360÷40=9即这个正多边形的边数为9故答案为:9【点睛】本题考查了正多边形的内角与外角,关键是运用方程求得正多边形的外角.5、【分析】根据矩形的性质得到∠B=90°,根据勾股定理得到,根据折叠的性质得到CFAF=5,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD是矩形,∴∠B=90°,AF=5,BF=3,∵将矩形ABCD折叠,使点C与点A重合,折痕为EFCFAF=5,BCBF+CF=8,故答案为:【点睛】本题主要考查了矩形与折叠问题,勾股定理,解题的关键在于能够熟练掌握折叠的性质.三、解答题1、(1);(2)10;(3)(4,2).【分析】(1)首先根据勾股定理求出OC=4,OA=8,然后利用待定系数法求解所在直线的解析式即可;(2)首先由折叠的性质得到AE=CE,然后在RtOCE中,根据勾股定理求出AE=CE=5,然后根据等腰三角形的性质求出CF=CE=5,最后根据三角形面积公式求解即可;(3)根据矩形的中心对称性质可得点M为矩形ABCD对角线的交点,然后根据中点坐标公式求解即可.【详解】解:(1)∵OA=2COOC=x,则OA=2xRtAOC中,由勾股定理可得OC2+OA2=AC2x2+(2x2=(42 解得x=4(x=﹣4舍去)OC=4,OA=8A(8,0),C(0,4)设直线AC解析式为y=kx+b,解得∴直线AC解析式为y=﹣x+4;(2)由折叠得AE=CEAE=CE=y,则OE=8﹣yRtOCE中,由勾股定理可得OE2+OC2=CE2∴(8﹣y2+42=y2解得y=5AE=CE=5 在矩形OABC中,BCOA∴∠CFE=∠AEF由折叠得∠AEF=∠CEF∴∠CFE=∠CEFCF=CE=5 SCEF=CFOC=×5×4=10 即重叠部分的面积为10;(3)∵矩形是一个中心对称图形,对称中心是对角线的交点,∴任何一个经过对角线交点的直线都把矩形的面积平分,所以点M即为矩形ABCD对角线的交点,即M点为AC的中点,A(8,0),C(0,4),M点坐标为(4,2).【点睛】此题考查了矩形的性质,勾股定理,待定系数法求一次函数表达式等知识,,解题的关键是熟练掌握矩形的性质,勾股定理,待定系数法求一次函数表达式.2、见解析【分析】连接,根据平行四边形的性质可得AO=OCDO=OB,由MAO的中点,NCO的中点,进而可得MO=ON,进而即可证明四边形是平行四边形,即可得证.【详解】如图,连接
     ∵四边形ABCD为平行四边形,AO=OCDO=OBMAO的中点,NCO的中点,MO=ON四边形是平行四边形,BMDNBM=DN【点睛】本题考查了平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键.3、(1)见解析;(2)见解析.【分析】(1)由平行四边形的性质得出ADBC,得出∠D=∠ECF,则可证明△ADE≌△FCEASA);(2)由平行四边形的性质证出ABBF,由全等三角形的性质得出AEFE,由等腰三角形的性质可得出结论.【详解】证明:(1)∵四边形ABCD为平行四边形,ADBC∴∠D=∠ECFECD的中点,EDEC在△ADE和△FCE中,∴△ADE≌△FCEASA);(2)∵四边形ABCD为平行四边形,ABCDADBC∴∠FAD=∠AFB又∵AF平分∠BAD∴∠FAD=∠FAB∴∠AFB=∠FABABBF∵△ADE≌△FCEAEFEBEAF【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,角平分线的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.4、(1)证明见解析;(2)73°.【分析】(1)根据正方形的性质及各角之间的关系可得:,由全等三角形的判定定理可得,再根据其性质即可得证;(2)根据垂直及等腰三角形的性质可得,再由三角形的外角的性质可得,由此计算即可.【详解】(1)证明:∵四边形ABCD是正方形,°,中,(2)解:∵BEBF又∵∵四边形ABCD是正方形,的值为【点睛】题目主要考查全等三角形的判定和性质,正方形的性质,三角形的外角性质,理解题意,熟练运用各个定理性质是解题关键.5、(1)见解析;(2)【分析】(1)由正方形的性质可得,由的余角相等可得∠CBG=∠CDE,进而证明△BCG≌△DCE,从而证明CG=CE(2)证明正方形的性质可得,结合已知条件即可求得,进而勾股定理即可求得的长【详解】(1)∵BFDE∴∠BFE=90°∵四边形ABCD是正方形∴∠DCE=90°,∴∠CBG+∠E=∠CDE+E∴∠CBG=∠CDE∴△BCG≌△DCECG=CE(2)∵,且CG=CE    中,【点睛】本题考查了正方形的性质,全等三角形的性质与判定,勾股定理,掌握三角形全等的性质与判定与勾股定理是解题的关键. 

    相关试卷

    初中数学第十五章 四边形综合与测试一课一练:

    这是一份初中数学第十五章 四边形综合与测试一课一练,共31页。试卷主要包含了下列说法中正确的是,下列说法中,正确的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试综合训练题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共30页。试卷主要包含了如图,M等内容,欢迎下载使用。

    北京课改版八年级下册第十五章 四边形综合与测试随堂练习题:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试随堂练习题,共27页。试卷主要包含了如图,在六边形中,若,则,下列图案中,是中心对称图形的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map