![2022年最新精品解析沪教版(上海)七年级数学第二学期第十二章实数定向攻克试题(名师精选)01](http://www.enxinlong.com/img-preview/2/3/12706784/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析沪教版(上海)七年级数学第二学期第十二章实数定向攻克试题(名师精选)02](http://www.enxinlong.com/img-preview/2/3/12706784/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析沪教版(上海)七年级数学第二学期第十二章实数定向攻克试题(名师精选)03](http://www.enxinlong.com/img-preview/2/3/12706784/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第十二章 实数综合与测试习题
展开沪教版(上海)七年级数学第二学期第十二章实数定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列整数中,与-1最接近的是( )
A.2 B.3 C.4 D.5
2、下列各式中,化简结果正确的是( )
A. B. C. D.
3、在实数|﹣3.14|,﹣3,﹣,﹣π中,最小的数是( )
A.﹣ B.﹣3 C.|﹣3.14| D.﹣π
4、实数﹣2的倒数是( )
A.2 B.﹣2 C. D.﹣
5、在﹣3,0,2,这组数中,最小的数是( )
A. B.﹣3 C.0 D.2
6、点A在数轴上的位置如图所示,则点A表示的数可能是( )
A. B. C. D.
7、计算2﹣1+30=( )
A. B.﹣1 C.1 D.
8、若,那么( )
A.1 B.-1 C.-3 D.-5
9、下列各数中,比小的数是( )
A. B.- C. D.
10、一个正方体的体积是5m3,则这个正方体的棱长是( )
A.m B.m C.25m D.125m
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一列数按某规律排列如下,…若第n个数为,则n=_____.
2、已知a,b 是有理数,且满足,那么a=________,b =________.
3、的平方根是__.
4、已知的小数部分是a,的整数部分是b,则a+b=_________.
5、的算术平方根是_____,的立方根是_____,的倒数是_____.
三、解答题(10小题,每小题5分,共计50分)
1、(1)计算:﹣32﹣(2021)0+|﹣2|﹣()﹣2×(﹣);
(2)解方程:=﹣1.
2、计算:
3、计算
(1)
(2)
4、解答下列各题:
(1)计算:
①
②
(2)分解因式:
5、求下列各式中的x:
(1);
(2).
6、计算:
(1)
(2)
7、(1)计算: ;
(2)求的值: .
8、如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,b满足|a+3|+(b﹣9)2=0,c=1.
(1)a= ,b= ;
(2)点P为数轴上一动点,其对应的数为x,则当x 时,代数式|x﹣a|﹣|x﹣b|取得最大值,最大值为 ;
(3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为t(t≤8)秒,求第几秒时,点P、Q之间的距离是点B、Q之问距离的2倍?
9、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天.哪一种方法得到的钱数多?请说明理由.(1年按365天计算)
10、计算:+++.
-参考答案-
一、单选题
1、A
【分析】
先由无理数估算,得到,且接近3,即可得到答案.
【详解】
解:由题意,
∵,且接近3,
∴最接近的是整数2;
故选:A.
【点睛】
本题考查了无理数的估算,解题的关键是掌握无理数的概念,正确的得到接近3.
2、D
【分析】
根据实数的运算法则依次对选项化简再判断即可.
【详解】
A、,化简结果错误,与题意不符,故错误.
B、,化简结果错误,与题意不符,故错误.
C、,化简结果错误,与题意不符,故错误.
D、,化简结果正确,与题意相符,故正确.
故选:D .
【点睛】
本题考查了实数的运算,解题的关键是熟练掌握实数的混合运算法则.
3、D
【分析】
把数字从大到小排序,然后再找最小数.
【详解】
解:|﹣3.14|=3.14.|﹣3|=3,|-|=,|﹣π|=π.
∴﹣π<﹣3<﹣<|﹣3.14|,
故选:D.
【点睛】
本题考查实数大小比较,掌握比较方法是本题关键.
4、D
【分析】
根据倒数的定义即可求解.
【详解】
解:-2的倒数是﹣.
故选:D
【点睛】
本题考查了倒数的定义,熟知倒数的定义“乘积等于1的两个数互为倒数”是解题关键.
5、B
【分析】
先确定3与的大小,再确定四个数的大小顺序,由此得到答案.
【详解】
解:∵9>7,
∴3>,
∴-3<,
∴-3<<0<2,
故选:B.
【点睛】
此题考查了实数的估值,实数的大小比较,正确掌握实数的估值计算是解题的关键.
6、A
【分析】
根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.
【详解】
解:观察得到点A表示的数在4至4.5之间,
A、∵16<18<20.25,∴4<<4.5,故该选项符合题意;
B、∵9<10<16,∴3<<4,故该选项不符合题意;
C、∵20.25<24<25,∴4.5<<5,故该选项不符合题意;
D、∵25<30<36,∴5<<6,故该选项不符合题意;
故选:A.
【点睛】
本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.
7、D
【分析】
利用负整数指数幂和零指数幂的意义进行化简计算即可.
【详解】
解:原式=+1=.
故选:D.
【点睛】
本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键.
8、D
【分析】
由非负数之和为,可得且,解方程求得,,代入问题得解.
【详解】
解: ,
且,
解得,,
,
故选:D
【点睛】
本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键.
9、A
【分析】
直接利用任何正数都大于0以及结合估算无理数大小的方法,进而得出答案.
【详解】
解:A. <-3,故A正确;
B. ->-3,故B错误;
C. >-3,故C错误;
D. >-3,故D错误.
故选A.
【点睛】
此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.
10、B
【分析】
根据正方体的体积公式:V=a3,把数据代入公式解答.
【详解】
解:××=5(立方米),
答:这个正方体的棱长是米,
故选:B.
【点睛】
此题主要考查正方体体积公式的灵活运用,关键是熟记公式.
二、填空题
1、50
【分析】
根据题目中的数据可以发现,分子变化是,…,分母变化是,…,从而可以求得第个数为时的值,本题得以解决.
【详解】
解:
∴可写成
∴分母为10开头到分母为1的数有10个,分别为
∴第n个数为,则n=1+2+3+4+…+9+5=50,
故答案为50.
【点睛】
本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.
2、-2 -1
【分析】
利用平方与算术平方根的非负性即可解决.
【详解】
∵,,且
∴,
∴,
故答案为:-2,-1
【点睛】
本题考查了有理数的平方的非负性质及算术平方根的非负性质,即几个非负数的和为零,则这几个数都为零.掌握这个性质是本题的关键.
3、
【分析】
根据平方的运算,可得,即可求解
【详解】
解:∵,
的平方根是,
故答案为:
【点睛】
本题主要考查了平方和平方根的性质,熟练掌握一个正数有两个平方根,且互为相反数是解题的关键.
4、
【分析】
先分别求出和的范围,得到a、b的值,再代入a+b计算即可.
【详解】
∵2<<3,2<<3,
∴a=−2,b=2,
a+b=−2+2=,
故答案为.
【点睛】
本题考查了估算无理数的大小,利用夹值法估算出和的范围是解此题的关键.
5、9
【分析】
根据相反数,算术平方根,立方根,平方根,倒数,绝对值的定义求出即可.
【详解】
解:=81的算术平方根是9,=的立方根是,的倒数是,
故答案为:-9,,.
【点睛】
本题考查了算术平方根,立方根,平方根,倒数等知识点的应用,主要考查学生的理解能力和计算能力.
三、解答题
1、(1)-7;(2)x=9.
【分析】
(1)直接利用绝对值的性质、零指数幂的性质、负整数指数幂的性质分别化简得出答案;
(2)直接去分母,移项合并同类项解方程即可.
【详解】
解:(1)原式=﹣9﹣1+2﹣9×(﹣)
=﹣9﹣1+2+1
=﹣7;
(2)去分母得:2x﹣3(1+x)=﹣12,
去括号得:2x﹣3﹣3x=﹣12,
移项得:2x﹣3x=﹣12+3,
合并同类项得:﹣x=﹣9,
系数化1得:x=9.
【点睛】
此题主要考查了实数运算以及一元一次方程的解法,正确掌握相关运算法则是解题关键.
2、
【分析】
先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.
【详解】
解:原式=1-8+4+
=.
【点睛】
本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.
3、
(1)-2
(2)1
【分析】
(1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;
(2)先去绝对值,去括号,再进行实数的加、减混合计算即可;
(1)
解:
;
(2)
解:
.
【点睛】
本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.
4、(1)①;②;(2)
【分析】
(1)①原式利用算术平方根、立方根性质,乘方的意义,以及绝对值的代数意义计算即可得到结果;②根据幂的乘方与积的乘方以及同底数幂的乘法法则进行计算,再进行合并同类项合并即可;
(2)原式提取公因式x,再利用完全平方公式分解即可.
【详解】
解:(1)①
②
(2)
【点睛】
此题考查了实数的运算、整式的乘除运算以及提公因式法与公式法的综合运用的知识点,熟练掌运算以及相关法则、方法是解本题的关键.
5、(1);(2)
【分析】
(1)根据等式的性质和平方根的意义进行计算即可;
(2)根据等式的性质和立方根的意义进行计算即可.
【详解】
解:(1),
两边都除以4得,,
所以,;
(2),
两边都减1得,,
所以,,
解得,.
【点睛】
本题考查等式的性质、立方根、平方根的意义,解题的关键是掌握等式的性质、平方根、立方根的意义是正确解答的关键.
6、(1)5;(2)
【分析】
(1)分别求解算术平方根与立方根,再进行加减运算即可;
(2)按照多项式除以单项式的法则:把多项式的每一项分别除以单项式,再把所得的商相加,从而可得答案.
【详解】
解:(1)
(2)
【点睛】
本题考查的是求解一个数的算术平方根与立方根,多项式除以单项式,掌握基础运算是解本题的关键.
7、(1)0;(2)
【分析】
(1)根据立方根和平方根的性质化简,再计算加法,即可求解;
(2)先将系数化为1,再利用平方根的性质,即可求解.
【详解】
解:(1) .
原式=-2+2
;
(2)
∴
解得: .
【点睛】
本题主要考查了立方根和平方根的性质,熟练掌握 是解题的关键.
8、(1)﹣3,9;(2)≥9,12;(3)秒或秒.
【分析】
(1)由|a+3|+(b﹣9)2=0,根据非负数的性质得|a+3|=0,(b﹣9)2=0,即可求出a=﹣3、b=9;
(2)由(1)得a=﹣3、b=9,则代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,按x<﹣3、﹣3≤x<9及x≥9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;
(3)先由点C表示的数是1,点B表示的数是9,计算出B、C两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可.
【详解】
解:(1)∵|a+3|≥0,(b﹣9)2≥0,且|a+3|+(b﹣9)2=0,
∴|a+3|=0,(b﹣9)2=0,
∴a=﹣3,b=9,
故答案为:﹣3,9.
(2)∵a=﹣3,b=9,
∴代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,
当x<﹣3时,|x+3|﹣|x﹣9|=﹣(x+3)﹣(9﹣x)=﹣12;
当﹣3≤x<9时,|x+3|﹣|x﹣9|=x+3﹣(9﹣x)=2x﹣6,
∵﹣12≤2x﹣6<12,
∴﹣12≤|x+3|﹣|x﹣9|<12;
当x≥9时,|x+3|﹣|x﹣9|=x+3﹣(x﹣9)=12,
综上所述,|x+3|﹣|x﹣9|的最大值为12,
故答案为:≥9,12.
(3)∵点C表示的数是1,点B表示的数是9,
∴B、C两点之间的距离是9﹣1=8,
当点Q与点C重合时,则2t=8,
解得t=4,
当0<t≤4时,如图1,点P表示的数是﹣3﹣t,点Q表示的数是9﹣2t,
根据题意得9﹣2t﹣(﹣3﹣t)=2×2t,
解得t=;
当4<t≤8时,如图2,点P表示的数仍是﹣3﹣t,
∵1+(2t﹣8)=2t﹣7,
∴点Q表示的数是2t﹣7,
根据题意得2t﹣7﹣(﹣3﹣t)=2(16﹣2t),
解得t=,
综上所述,第秒或第秒,点P、Q之间的距离是点B、Q之间距离的2倍.
【点睛】
本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键.
9、第二种,理由见解析
【分析】
根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n-1元钱.即可得总数,然后比较大小即可知哪种方案得到的多.
【详解】
解:第一种方法:1×10×365=3650元
第二种方法:1+2+22+23+24+…+219=220-1=1048575分=10485.75元
∵10485.75>3650
∴第二种方法得到的钱多.
【点睛】
本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小.考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在.
10、.
【分析】
先化简绝对值、计算算术平方根与立方根,再计算实数的加减法即可得.
【详解】
解:原式
.
【点睛】
本题考查了算术平方根与立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题,共19页。试卷主要包含了在下列各数,若与互为相反数,则a,估计的值在,a为有理数,定义运算符号▽等内容,欢迎下载使用。
2020-2021学年第十二章 实数综合与测试同步练习题: 这是一份2020-2021学年第十二章 实数综合与测试同步练习题,共18页。试卷主要包含了a为有理数,定义运算符号▽,对于两个有理数,如果a,100的算术平方根是,下列各组数中相等的是等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试练习: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试练习,共20页。试卷主要包含了下列说法中,正确的是,在以下实数,下列各数中,比小的数是,估计的值应该在.等内容,欢迎下载使用。