![2022年最新强化训练沪教版(上海)七年级数学第二学期第十二章实数专项练习试题(含解析)第1页](http://www.enxinlong.com/img-preview/2/3/12707166/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练沪教版(上海)七年级数学第二学期第十二章实数专项练习试题(含解析)第2页](http://www.enxinlong.com/img-preview/2/3/12707166/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练沪教版(上海)七年级数学第二学期第十二章实数专项练习试题(含解析)第3页](http://www.enxinlong.com/img-preview/2/3/12707166/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第十二章 实数综合与测试习题
展开
这是一份数学七年级下册第十二章 实数综合与测试习题,共23页。试卷主要包含了下列等式正确的是.,﹣π,﹣3,,的大小顺序是,化简计算﹣的结果是,在下列四个实数中,最大的数是,以下正方形的边长是无理数的是等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若与互为相反数,则a、b的值为( )A. B. C. D.2、4的平方根是( )A.2 B.﹣2 C.±2 D.没有平方根3、若 ,则 ( )A. B. C. D.4、下列等式正确的是( ).A. B. C. D.5、﹣π,﹣3,,的大小顺序是( )A. B.C. D.6、化简计算﹣的结果是( )A.12 B.4 C.﹣4 D.﹣127、在下列四个实数中,最大的数是( )A.0 B.﹣2 C.2 D.8、以下正方形的边长是无理数的是( )A.面积为9的正方形 B.面积为49的正方形C.面积为8的正方形 D.面积为25的正方形9、一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.若每个小立方块的体积为216cm³,则该几何体的最大高度是( )A.6cm B.12cm C.18cm D.24cm10、若,则的值为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、化简=_______,=_______.2、已知a,b 是有理数,且满足,那么a=________,b =________.3、若一个正数的两个平方根分别为 a+3与3a+1,则a=__________.4、如果一个正数x的平方根是2a﹣3和5﹣a,那么x的值是 _____.5、0.064的立方根是______.三、解答题(10小题,每小题5分,共计50分)1、阅读下面材料,并按要求完成相应问题:定义:如果一个数的平方等于-1,记为,这个数叫做虚数单位,把形如的数叫做复数,其中是这个复数的实部,是这个复数的虚部.它的加﹑减﹑乘法运算与整式的加﹑减﹑乘法运算类似.例如:应用:(1)计算(2)如果正整数a、b满足,求a、b的值.(3)将化为(均为实数)的形式,(即化为分母中不含的形式).2、计算:(1)(2)3、若一个四位自然数满足千位数字比十位数字大3,百位数字比个位数字大3,我们称这个数为“多多数”.将一个“多多数”各个数位上的数字倒序排列可得到一个新的四位数,记.例如:,∴,则(1)判断7643和4631是否为“多多数”?请说明理由;(2)若为一个能被13整除的“多多数”,且,求满足条件的“多多数”.4、解方程:(1)x2=81;(2)(x﹣1)3=27.5、计算:(π-4)0+|-6|-+6、(1)计算(2)计算(3)解方程(4)解方程组7、计算:(1); (2).8、运算,满足(1)求的值;(2)求的值.9、(1)计算:;(2)求下列各式中的x:①;②(x+3)3=﹣27.10、将下列各数填入相应的横线上:整数:{ …}有理数: { …}无理数: { …}负实数: { …}. -参考答案-一、单选题1、D【分析】首先根据绝对值的性质和二次根式的性质得到,然后解方程组求解即可.【详解】解:∵与互为相反数,∴+=0,∴,得:,得:,解得:,将代入①得:,解得:.故选:D.【点睛】此题考查了绝对值的性质,二次根式的性质,相反数的性质以及解二元一次方程组等知识,解题的关键是根据题意得出关于a、b的方程组并求解.2、C【分析】根据平方根的定义(如果一个数x的平方等于a,那么这个数x就叫做a的平方根)和性质(一个正数有两个实平方根,它们互为相反数)直接得出即可.【详解】解:4的平方根,即:,故选:C.【点睛】题目主要考查平方根的定义和性质,熟练掌握其性质及求法是解题关键.3、B【分析】先利用的值,求出,再利用负整数指数幂的运算法则,得到的值.【详解】解:,或(舍去),,故选:B.【点睛】本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:,是解决本题的关键.4、由不等式的性质可知:5-2<−2<6-2,即3<−2<故选:C.【点睛】本题主要考查的是估算无理数的大小,明确被开方数越大对应的算术平方根也越大是解题的关键.4.C【分析】分别利用平方根和算术平方根以及立方根得出各选项是否正确即可.【详解】解:A、,故此选项错误;B、,故此选项错误;C、由B得此选项正确;D、,故此选项错误.故选:C.【点睛】此题主要考查了立方根、平方根、算术平方根等知识,正确把握各定义是解题关键.5、B【分析】根据实数的大小比较法则即可得.【详解】解:,,,则,故选:B.【点睛】本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键.6、B【分析】根据算术平方根和立方根的计算法则进行求解即可.【详解】解:,故选B.【点睛】本题主要考查了求算术平方根和立方根,解题的关键在于能够熟练掌握立方根和算术平方根的求解方法.7、C【分析】先根据正数大于0,0大于负数,排除,,然后再用平方法比较2与即可.【详解】解:正数,负数,排除,,,,,,最大的数是2,故选:.【点睛】本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键.8、C【分析】理解无理数的分类:无限不循环小数或开方不能开尽的数,求出正方形边长由此判断即可得出.【详解】解:A、面积为9的正方形的边长为3,是整数,属于有理数,故本选项不合题意;B、面积为49的正方形的边长为7,是整数,属于有理数,故本选项不合题意;C、面积为8的正方形的边长为,是无理数,故本选项符合题意;D、面积为25的正方形的边长为5,是整数,属于有理数,故本选项不合题意.故选:C.【点睛】本题主要考查了无理数的分类,准确掌握无理数的分类是解题关键.9、D【分析】由每个小立方体的体积为216cm3,得到小立方体的棱长,再由三视图可知,最高处有四个小立方体,则该几何体的最大高度是4×6=24cm.【详解】解:∵每个小立方体的体积为216cm3,∴小立方体的棱长,由三视图可知,最高处有四个小立方体,∴该几何体的最大高度是4×6=24cm,故选D.【点睛】本题主要考查了立方根和三视图,解题的关键在于能够正确求出小立方体的棱长.10、B【分析】根据算术平方根、偶次方的非负性确定a和b的值,然后代入计算.【详解】解:,,,,解得,,所以.故选:B【点睛】本题考查的是配方法的应用、非负数的性质,灵活运用配方法、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.二、填空题1、2 3 【分析】由题意直接根据立方根和算术平方根的性质进行化简即可得出答案.【详解】解:=2,=3.故答案为:2,3.【点睛】本题考查立方根和算术平方根的化简,熟练掌握立方根和算术平方根的性质是解题的关键.2、-2 -1 【分析】利用平方与算术平方根的非负性即可解决.【详解】∵,,且∴,∴,故答案为:-2,-1【点睛】本题考查了有理数的平方的非负性质及算术平方根的非负性质,即几个非负数的和为零,则这几个数都为零.掌握这个性质是本题的关键.3、-1【分析】直接利用平方根的定义得出a+3+2a+3=0,进而求出答案.【详解】解:∵一个正数的两个平方根分别为a+3和3a+1,∴a+3+3a+1=0,解得:a=-1,故答案为:-1.【点睛】本题考查了平方根的定义.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.4、49【分析】一个正数的平方根性质是互为相反数得出2a﹣3+5﹣a=0,解方程求出a =-2,再求平方根,利用平方根求出原数即可【详解】解:∵一个正数x的平方根是2a﹣3和5﹣a,∴2a﹣3+5﹣a=0,解得a =-2,当a =-2时2a﹣3=-2×2-3=-7,∴x=(-7)2=49.故答案为:49.【点睛】本题考查一个正数x的平方根性质,一个正数有两个平方根,它们是互为相反数,0的平方根是0,负数没有平方根,根据平方根性质列方程是解题关键.5、0.4【分析】根据立方根的定义直接求解即可.【详解】解:∵,∴0.064的立方根是0.4.故答案为:0.4.【点睛】本题考查了立方根,解决本题的关键是熟记立方根的定义.三、解答题1、(1);(2)或;(3).【分析】(1)原式利用多项式乘以多项式法则,完全平方公式以及题中的新定义计算即可求出值;(2)利用平方差公式计算得出答案;(3)分子分母同乘以(2-i)后,把分母化为不含i的数后计算.【详解】(1)∵∴原式(2)∵∴∵a、b是正整数∴或(3)【点睛】本题考查了实数的运算,以及完全平方公式的运用,能读懂题意是解此题的关键,解题步骤为:阅读理解,发现信息;提炼信息,发现规律;运用规律,联想迁移;类比推理,解答问题.2、(1);(2)【分析】(1)原式先化简绝对值、二次根式以及立方根,然后再进行外挂;(2)原式先计算括号内的,再把除法转化为乘法,再进行约分即可.【详解】解:(1)===;(2) ===.【点睛】本题主要考查了实数的混合运算以及分式的加减乘除混合运算,掌握运算法则是解答本题的关键.3、(1)7643是“多多数”, 4631不是“多多数”,(2)5421或6734【分析】(1)根据新定义,即可判断;(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,根据新定义,分别表示出A、F(A),根据为一个能被13整除的“多多数”,且,,列出关系式,进而求解.(1)在7643中,7-4=3,6-3=3,∴7643是“多多数”,在4631中,3-3=1,6-1=5,∴4631不是“多多数”,(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,∴A表示的数为∴∴∵∴∴∵个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,∴,解得∴x、y的范围为,且x、y为整数∵若为一个能被13整除的“多多数”,∴ 当时,,,y的值可以为0、1、2、3、4、5、6,分别代入后结果是13的倍数的是同理,当时,,,没有符合条件的y;当时,,,没有符合条件的y;当时,,,符合条件的;当时,,,没有符合条件的y;当时,,,没有符合条件的y;综上符合条件的是、当时A为5421,当时A为6734综上足条件的“多多数”为5421或6734.【点睛】本题考查整式运算的应用、解不等式,是一道新定义题目,解题的关键是能够根据定义列出关系式并确定个位和十位数的取值范围,进而求解.4、(1)x=±9;(2)x=4【分析】(1)方程利用平方根定义开方即可求出解;(2)方程利用立方根定义开立方即可求出解.【详解】解:(1)开方得:x=±9;(2)开立方得:x﹣1=3,解得:x=4.【点睛】本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).5、9【分析】根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解.【详解】解:原式【点睛】本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键.6、(1);(2);(3)或;(4).【分析】(1)先计算算术平方根与立方根,再计算加减法即可得;(2)先化简绝对值,再计算实数的加减法即可得;(3)利用平方根解方程即可得;(4)利用加减消元法解二元一次方程组即可得.【详解】解:(1)原式;(2)原式;(3),,,或;(4),由②①得:,解得,将代入①得:,解得,故方程组的解为.【点睛】本题考查了算术平方根与立方根、实数的加减、解二元一次方程组等知识点,熟练掌握各运算法则和方程组的解法是解题关键.7、(1)1;(2)2【分析】(1)根据零指数幂定义,负整数指数幂定义及绝对值的性质分别化简,再计算加减法;(2)根据同分母分式的加减法法则计算.【详解】解:(1)原式=1+2-2 =1.(2)原式= = =2.【点睛】此题考查了计算能力:实数的混合运算,同分母分式的加减法,正确掌握零指数幂定义,负整数指数幂定义,绝对值的性质,同分母分式的加减法法则是解题的关键..8、(1)-10(2)-22【解析】(1)解:(2)解:【点睛】本题考查了有理数的混合运算,利用新运算代入求值即可,关键在于理解新运算,代入时候看清楚符号是否正确.9、(1);(2)①;②【分析】(1)利用去绝对值符号的方法,立方根定义,平方根的定义对式子进行运算即可;(2)①对等式进行开平方运算,再把x的系数转化为1即可;②对等式进行开立方运算,再移项即可.【详解】解:(1)=2(﹣2)﹣3=﹣3;(2)①±3x=±6;②(x+3)3=﹣27x+3=﹣3x=﹣6.【点睛】本题主要考查实数的运算,立方根,平方根,解答的关键是对相应的运算法则的掌握与应用.10、;;,-3.030030003…,π;-3.030030003…,;【分析】有理数与无理数统称实数,整数与分数统称有理数,按照无理数、有理数的定义及实数的分类标准进行分类即可.【详解】整数:{ }有理数:{ }无理数:{,-3.030 030 003…,π…};负实数:{-3.030 030 003…, …};【点睛】本题考查的是实数的概念与分类,掌握“实数的分类与概念”是解本题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题,共19页。试卷主要包含了的相反数是,a为有理数,定义运算符号▽,若,则整数a的值不可能为,下列说法不正确的是等内容,欢迎下载使用。
这是一份2020-2021学年第十二章 实数综合与测试巩固练习,共19页。试卷主要包含了若,那么,在下列四个实数中,最大的数是,10的算术平方根是等内容,欢迎下载使用。
这是一份2020-2021学年第十二章 实数综合与测试练习,共24页。试卷主要包含了下列说法,三个实数,2,之间的大小关系,16的平方根是,下列各数是无理数的是,在0.1010010001…等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)