终身会员
搜索
    上传资料 赚现金

    精品试题沪教版(上海)七年级数学第二学期第十二章实数综合测试试题(含解析)

    立即下载
    加入资料篮
    精品试题沪教版(上海)七年级数学第二学期第十二章实数综合测试试题(含解析)第1页
    精品试题沪教版(上海)七年级数学第二学期第十二章实数综合测试试题(含解析)第2页
    精品试题沪教版(上海)七年级数学第二学期第十二章实数综合测试试题(含解析)第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十二章 实数综合与测试练习题

    展开

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试练习题,共19页。试卷主要包含了的值等于,估计的值应该在.,以下正方形的边长是无理数的是,下列等式正确的是.,规定一种新运算等内容,欢迎下载使用。


    沪教版(上海)七年级数学第二学期第十二章实数综合测试

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、实数2,0,﹣3,﹣中,最小的数是(  )

    A.﹣3 B.﹣ C.2 D.0

    2、可以表示(   

    A.0.2的平方根 B.的算术平方根

    C.0.2的负的平方根 D.的立方根

    3、4的平方根是(  )

    A.±2 B.﹣2 C.2 D.4

    4、的值等于(   

    A. B.-2 C. D.2

    5、在下列四个选项中,数值最接近的是(   

    A.2 B.3 C.4 D.5

    6、估计的值应该在(    ).

    A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间

    7、以下正方形的边长是无理数的是(   

    A.面积为9的正方形 B.面积为49的正方形

    C.面积为8的正方形 D.面积为25的正方形

    8、下列等式正确的是(    ).

    A. B. C. D.

    9、规定一种新运算:,如.则的值是(    ).

    A. B. C.6 D.8

    10、3的算术平方根为(   

    A. B.9 C.±9 D.±

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、的算术平方根是_____,的立方根是_____,的倒数是_____.

    2、比较大小:_________

    3、0.064的立方根是______.

    4、的平方根是______,______.

    5、给定二元数对(pq),其中或1,或1.三种转换器ABC对(pq)的转换规则如下:

    (1)在图1所示的“ABC”组合转换器中,若输入,则输出结果为________;

    (2)在图2所示的“①—C—②”组合转换器中,若当输入时,输出结果均为0,则该组合转换器为“____—C—____”(写出一种组合即可).

    三、解答题(10小题,每小题5分,共计50分)

    1、对于有理数ab,定义运算:

    (1)计算的值;

    (2)填空_______:(填“>”、“<”或“=”)

    (3)相等吗?若相等,请说明理由.

    2、求下列各式中x的值.

    (1)x-3)3=4

    (2)9(x+2)2=16

    3、阅读下面的文字,解答问题.

    现规定:分别用表示实数x的整数部分和小数部分,如实数3.14的整数部分是,小数部分是;实数的整数部分是,小数部分是无限不循环小数,无法写完整,但是把它的整数部分减去,就等于它的小数部分,即就是的小数部分,所以

    (1)                                   

    (2)如果,求的立方根.

    4、解方程:

    (1)x2=81;

    (2)(x﹣1)3=27.

    5、已知a2=16,b3=27,求ab的值.

    6、计算:

    7、已知xy满足,求xy的值.

    8、计算:

    9、计算下列各题:

    (1)

    (2)

    (3)

    10、如果一个四位数m满足各数位上的数字均不为0,将它的千位数字与百位数字之积记为,十位数字与个位数字之和记为,记Fm,若Fm)为整效,则称这个数为“运算数“,例如:∵F(5332)3,3是整数,∴5332是“运算数”;∵F(1722)不是整数,∴1722不是“运算数”.

    (1)请判断9981与2314是否是“运算数”,并说明理由.

    (2)若自然数st都是“运算数”,其中s=8910+11x(2≤x≤8,且x为整数);t的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,且Ft)=4,规定:k,求所有k的值.

     

    -参考答案-

    一、单选题

    1、A

    【分析】

    根据实数的性质即可判断大小.

    【详解】

    解:∵﹣3<﹣<0<2

    故选A.

    【点睛】

    此题主要考查实数的大小比较,解题的关键是熟知实数的性质.

    2、C

    【分析】

    根据平方根和算术平方根的定义解答即可.

    【详解】

    解:可以表示0.2的负的平方根,

    故选:C

    【点睛】

    此题考查了算术平方根和平方根.解题的关键是掌握平方根和算术平方根的定义,要注意:平方根和算术平方根的区别:一个正数的平方根有两个,互为相反数.

    3、A

    【分析】

    根据平方根的定义,求数a的平方根,也就是求一个数x,使得,则x就是a的平方根.

    【详解】

    解:∵

    ∴4的平方根是

    故选:A.

    【点睛】

    本题主要考查平方根的定义,熟练掌握平方根的定义是解题的关键.

    4、D

    【分析】

    由于表示4的算术平方根,由此即可得到结果.

    【详解】

    解:∵4的算术平方根为2,

    的值为2.

    故选D.

    【点睛】

    此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.

    5、A

    【分析】

    根据无理数的估算先判断,进而根据,进而可以判断,即可求得答案

    【详解】

    解:

    ,即更接近2

    故选A

    【点睛】

    本题考查了无理数的估算,掌握无理数的估算是解题的关键.

    6、C

    【分析】

    根据25<29<36估算出的大小,然后可求得的范围.

    【详解】

    解:∵25<29<36,

    ,即5<<6.

    7、C

    【分析】

    理解无理数的分类:无限不循环小数或开方不能开尽的数,求出正方形边长由此判断即可得出.

    【详解】

    解:A、面积为9的正方形的边长为3,是整数,属于有理数,故本选项不合题意;

    B、面积为49的正方形的边长为7,是整数,属于有理数,故本选项不合题意;

    C、面积为8的正方形的边长为,是无理数,故本选项符合题意;

    D、面积为25的正方形的边长为5,是整数,属于有理数,故本选项不合题意.

    故选:C.

    【点睛】

    本题主要考查了无理数的分类,准确掌握无理数的分类是解题关键.

    8、由不等式的性质可知:5-2<−2<6-2,即3<−2<

    故选:C.

    【点睛】

    本题主要考查的是估算无理数的大小,明确被开方数越大对应的算术平方根也越大是解题的关键.

    4.C

    【分析】

    分别利用平方根和算术平方根以及立方根得出各选项是否正确即可.

    【详解】

    解:A,故此选项错误;

    B,故此选项错误;

    C、由B得此选项正确;

    D,故此选项错误.

    故选:C

    【点睛】

    此题主要考查了立方根、平方根、算术平方根等知识,正确把握各定义是解题关键.

    9、C

    【分析】

    根据新定义计算法则把转化为常规下运算得出,然后按有理数运算法则计算即可.

    【详解】

    解:∵

    故选择C.

    【点睛】

    本题考查新定义运算,掌握新定义运算的要点,含乘方的有理数混合运算是解题关键.

    10、A

    【分析】

    利用算术平方根的定义求解即可.

    【详解】

    3的算术平方根是

    故选:A.

    【点睛】

    本题考查的是算术平方根的概念,属于基础题目,掌握算术平方根的概念是解题的关键.

    二、填空题

    1、9

    【分析】

    根据相反数,算术平方根,立方根,平方根,倒数,绝对值的定义求出即可.

    【详解】

    解:=81的算术平方根是9,=的立方根是的倒数是

    故答案为:-9,

    【点睛】

    本题考查了算术平方根,立方根,平方根,倒数等知识点的应用,主要考查学生的理解能力和计算能力.

    2、<

    【分析】

    先把两个数同时平方后比较大小,因为都是正数,即平方后的数越大,其这个数越大,由此求解即可.

    【详解】

    解:∵

    故答案为:<.

    【点睛】

    本题主要考查了实数比较大小,解题的关键在于能够熟练掌握实数比较大小的方法.

    3、0.4

    【分析】

    根据立方根的定义直接求解即可.

    【详解】

    解:∵

    ∴0.064的立方根是0.4.

    故答案为:0.4.

    【点睛】

    本题考查了立方根,解决本题的关键是熟记立方根的定义.

    4、±2    -8   

    【分析】

    根据平方根的定义:如果对于一个数a和非负数b,有,那么a就叫做b的平方根;立方根的定义:对于cd两个数,如果,那么c就叫做d的立方根,进行求解即可.

    【详解】

    解:∵,4的平方根为±2,

    的平方根为±2,

    故答案为:±2;-8.

    【点睛】

    本题主要考查了算术平方根,平方根和立方根,熟知相关定义是解题的关键.

    5、1    A    A   

    【分析】

    (1)利用转换器C的规则即可求出答案.

    (2)利用转换器ABC的规则,写出一组即可.

    【详解】

    (1)解:利用转换器C的规则可得:输出结果为1.

    (2)解:当输入时,若①对应A,此时经过AC输出结果为(1,0),②对应A,输出结果恰好为0.

    当输入时,若①对应A,此时经过AC输出结果为(0,1),②对应A,输出结果恰好为0.

    故答案为:1;AA

    【点睛】

    本题主要是新定义题目,利用题目所给规则,进行分析判断,即可解答出该题目.

    三、解答题

    1、(1);(2)=;(3)相等,证明见详解.

    【分析】

    (1)按照给定的运算程序,一步一步计算即可;

    (2)先按新定义运算,再比较大小;

    (3)按新定义分别运算即可说明理由.

    【详解】

    解:(1)

    (2)

    =

    故答案是:=;

    (3)相等

    =

    【点睛】

    此题是定义新运算题型,直接把对应的数字代入所给的式子可求出所要的结果.

    2、(1)x=5;(2)x=-x=

    【分析】

    (1)把x-3可做一个整体求出其立方根,进而求出x的值;

    (2)把x+2可做一个整体求出其平方根,进而求出x的值.

    【详解】

    解:(1) (x−3)3=4,

    x-3)3=8,

    x-3=2,

    x=5;

    (2)9(x+2)2=16,

    x+2)2=

    x+2=

    x=-x=

    【点睛】

    本题考查了立方根和平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.

    3、(1)1,,3,;(2)2

    【分析】

    (1)先估算出的范围,再根据题目规定的表示方法写出答案即可;

    (2)先估算出的范围,即可求出ab的值,进一步即可求出结果.

    【详解】

    (1)∵1<<2,3<<4,

    ∴[]=1,<>=−1,[]=3,<>=−3,

    故答案为:1,,3,

    (2)∵2<<3,10<<11,

    ∴<>=a=−2,[]=b=10,

    的立方根是2.

    【点睛】

    本题考查了估算无理数的大小和平方根的意义,能够估算出无理数的范围是解决问题的关键.

    4、(1)x=±9;(2)x=4

    【分析】

    (1)方程利用平方根定义开方即可求出解;

    (2)方程利用立方根定义开立方即可求出解.

    【详解】

    解:(1)开方得:x=±9;

    (2)开立方得:x﹣1=3,

    解得:x=4.

    【点睛】

    本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).

    5、64或﹣64

    【分析】

    根据平方根、立方根、有理数的乘方解决此题.

    【详解】

    解:∵a2=16,b3=27,

    a=±4,b=3.

    a=4,b=3时,ab=43=64.

    a=﹣4,b=3时,ab=(﹣4)3=﹣64.

    综上:ab=64或﹣64.

    【点睛】

    本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键.

    6、2

    【分析】

    根据算术平方根与立方根的定义即可完成.

    【详解】

    解:

    【点睛】

    本题是实数的运算,考查了算术平方根的定义、立方根的定义,关键是掌握两个定义,要注意的是负数没有平方根,而任何实数都有立方根.

    7、x=5;y=2

    【分析】

    根据非负数的性质可得关于xy的方程组,求解可得其值;

    【详解】

    解:由题意可得

    联立得

    解方程组得:

    xy的值分别为5、2.

    【点睛】

    此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.

    8、7

    【分析】

    根据实数的性质化简即可求解.

    【详解】

    解:原式

    【点睛】

    此题主要考查实数的混合运算,解题的关键是熟知负指数幂的运算法则.

    9、

    (1)-3

    (2)-6x

    (3)4y-3xz

    【分析】

    (1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;

    (2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算.

    (3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.

    (1)

    解:原式

    (2)

    解:原式

    (3)

    解:

    【点睛】

    本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(abn=anbn运算法则,整式的除法,理解a0=1(a≠0),a≠0),牢记法则是解题关键.

    10、(1)9981是“运算数”,2314不是“运算数”;(2)738.5

    【分析】

    (1)根据“运算数”的定义计算即可;

    (2)根据找出,设,其中,且为整数,由,找出的值,代入中即可得解.

    【详解】

    (1),9是整数,∴9981是“运算数”,

    不是整数,∴2314不是“运算数”;

    (2)为整数,

    可为:8932,8943,8954,8965,8976,8987,8998,

    是“运算数”,

    的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,

    设百位上的数字为,个位数上的数字为,则千位上的数字为,十位上的数字为,其中为整数,

    ,即

    时,,其他情况不满足题意,

    【点睛】

    本题考查新定义下的实数运算,掌握“运算数”的定义是解题的关键.

     

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习题,共18页。试卷主要包含了3的算术平方根是,估计的值应该在.等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题,共19页。试卷主要包含了下列等式正确的是,估算的值是在之间,下列说法中,正确的是,实数﹣2的倒数是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题,共21页。试卷主要包含了若,则的值为,以下正方形的边长是无理数的是,下列各数中,比小的数是,下列各式中,化简结果正确的是,对于两个有理数,3的算术平方根为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map