![精品试题沪教版(上海)七年级数学第二学期第十二章实数综合测评试题(含详细解析)第1页](http://www.enxinlong.com/img-preview/2/3/12707235/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题沪教版(上海)七年级数学第二学期第十二章实数综合测评试题(含详细解析)第2页](http://www.enxinlong.com/img-preview/2/3/12707235/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题沪教版(上海)七年级数学第二学期第十二章实数综合测评试题(含详细解析)第3页](http://www.enxinlong.com/img-preview/2/3/12707235/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题,共19页。试卷主要包含了下列等式正确的是,估算的值是在之间,下列说法中,正确的是,实数﹣2的倒数是等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在,, 0, , , 0.010010001……, , -0.333…, , 3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )A.2个 B.3个 C.4个 D.5个2、下列各式中,化简结果正确的是( )A. B. C. D.3、下列各数中,3.1415,,,0.321,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),无理数有( )A.0个 B.1个 C.2个 D.3个4、下列等式正确的是( )A. B. C. D.5、估算的值是在( )之间A.5和6 B.6和7 C.7和8 D.8和96、下列说法中,正确的是( )A.无限小数都是无理数B.数轴上的点表示的数都是有理数C.任何数的绝对值都是正数D.和为0的两个数互为相反数7、实数﹣2的倒数是( )A.2 B.﹣2 C. D.﹣8、在实数|﹣3.14|,﹣3,﹣,﹣π中,最小的数是( )A.﹣ B.﹣3 C.|﹣3.14| D.﹣π9、在实数,,,,,,,0.1010010001…(相邻两个1中间依次多1个0)中,无理数有( ).A.2个 B.3个 C.4个 D.5个10、的算术平方根是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、近几年来魔术风靡我国,小亮发明了一个魔术盒,把一个实数对(,)放入其中,就得到一个数为2-3+1,如把(3,2)放入其中,就得到32-32+1=4,若把(-3,2)放入其中,得到数,再把(,4)放入其中,则得到的数是___________.2、比较大小:_____2(填“>”或“<”或“=”)3、已知432=1849,442=1936,452=2025,462=2116,若n为整数,且n<<n+1,则n的值为 _____.4、一个正方形的面积为5,则它的边长为_____.5、观察下列关于正整数的等式:7*5*2=351410…①8*6*3=482418…②5*4*2=201008…③根据你发现的规律,请计算3*4*5=_____.三、解答题(10小题,每小题5分,共计50分)1、如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,b满足|a+3|+(b﹣9)2=0,c=1.(1)a= ,b= ;(2)点P为数轴上一动点,其对应的数为x,则当x 时,代数式|x﹣a|﹣|x﹣b|取得最大值,最大值为 ;(3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为t(t≤8)秒,求第几秒时,点P、Q之间的距离是点B、Q之问距离的2倍?2、计算 3、计算:(π-4)0+|-6|-+4、求下列各式中的值:(1); (2).5、计算:+++.6、计算:.7、小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2的桌面,并且长宽之比为4∶3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.8、已知:,求x+17的算术平方根.9、计算:10、计算题:(1);(2). -参考答案-一、单选题1、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:=1,=2,,3,∴无理数有,,,2.010101…(相邻两个1之间有1个0)共4个.故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2、D【分析】根据实数的运算法则依次对选项化简再判断即可.【详解】A、,化简结果错误,与题意不符,故错误.B、,化简结果错误,与题意不符,故错误.C、,化简结果错误,与题意不符,故错误.D、,化简结果正确,与题意相符,故正确.故选:D .【点睛】本题考查了实数的运算,解题的关键是熟练掌握实数的混合运算法则.3、D【分析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.1415,0.321是有限小数,属于有理数;是分数,属于有理数;无理数有,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),共3个.故选:D.【点睛】此题考查了无理数.解题的关键是掌握实数的分类.4、C【分析】根据算术平方根的定义和性质,立方根的定义逐项分析判断即可【详解】A. ,故该选项不正确,不符合题意;B. 无意义,故该选项不正确,不符合题意; C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选C【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).5、C【分析】根据题意可知判断的值在5、6、7、8、9哪个数之间,即的值在2、3、4、5、6哪个数之间,2、3、4、5、6可表示为,显然,即,故.【详解】∵∴∴故选:C.【点睛】本题考查了算术平方根估计范围,将先看作进行比较,再加上3是解题的关键.6、D【分析】根据实数的性质依次判断即可.【详解】解:A.∵无限不循环小数才是无理数.∴A错误.B.∵数轴上的点也可以表示无理数.∴B错误.C.∵0的绝对值是0,既不是正数也不是负数.∴C错误.D.∵和为0的两个数互为相反数.∴D正确.故选:D.【点睛】本题考查了无理数的定义,实数与数轴的关系,绝对值的性质,以及相反数的定义,熟练掌握各知识点是解答本题的关键.7、D【分析】根据倒数的定义即可求解.【详解】解:-2的倒数是﹣.故选:D【点睛】本题考查了倒数的定义,熟知倒数的定义“乘积等于1的两个数互为倒数”是解题关键.8、D【分析】把数字从大到小排序,然后再找最小数.【详解】解:|﹣3.14|=3.14.|﹣3|=3,|-|=,|﹣π|=π.∴﹣π<﹣3<﹣<|﹣3.14|,故选:D.【点睛】本题考查实数大小比较,掌握比较方法是本题关键.9、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:是有理数,是无限循环小数,是有理数,是分数,是有理数,,,,,0.1010010001…(相邻两个1中间依次多1个0)是无理数,共个,故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10、A【分析】根据算术平方根的定义即可完成.【详解】∵ ∴的算术平方根是 即 故选:A【点睛】本题考查了算术平方根的计算,掌握算术平方根的定义是关键.二、填空题1、5【分析】由魔术盒的性质可知m=(-3)2-32+1=4,故(4,4)在魔术盒中的数字为(4)2-34+1=5.【详解】将(-3,2)代入2-3+1有(-3)2-32+1=4故m=4再将(4,4)代入2-3+1有(4)2-34+1=5.故答案为:5.【点睛】本题考查了新定义下的实数运算,按照定义的运算公式代入计算即可.2、>【分析】根据即可得出答案.【详解】∵,∴,故答案为:>.【点睛】本题主要考查的是比较实数的大小,熟练掌握相关知识是解题的关键.3、44【分析】由已知条件的提示可得,即,从而可得答案.【详解】解:,∴即 又∵,n为整数,.故答案为:44.【点睛】本题考查的是无理数的估算,掌握无理数的估算方法是解题的关键.4、【分析】根据正方形面积根式求出边长,即可得出答案.【详解】解:边长为: 故答案为【点睛】本题考查了算术平方根,关键是会求一个数的算术平方根.5、121520【分析】观察规律可知,算出3*4*5即可.【详解】①,②,③,.故答案为:121520.【点睛】本题考查数字类找规律问题,根据题目给出的信息找出规律是解题的关键.三、解答题1、(1)﹣3,9;(2)≥9,12;(3)秒或秒.【分析】(1)由|a+3|+(b﹣9)2=0,根据非负数的性质得|a+3|=0,(b﹣9)2=0,即可求出a=﹣3、b=9;(2)由(1)得a=﹣3、b=9,则代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,按x<﹣3、﹣3≤x<9及x≥9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;(3)先由点C表示的数是1,点B表示的数是9,计算出B、C两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可.【详解】解:(1)∵|a+3|≥0,(b﹣9)2≥0,且|a+3|+(b﹣9)2=0,∴|a+3|=0,(b﹣9)2=0,∴a=﹣3,b=9,故答案为:﹣3,9.(2)∵a=﹣3,b=9,∴代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,当x<﹣3时,|x+3|﹣|x﹣9|=﹣(x+3)﹣(9﹣x)=﹣12;当﹣3≤x<9时,|x+3|﹣|x﹣9|=x+3﹣(9﹣x)=2x﹣6,∵﹣12≤2x﹣6<12,∴﹣12≤|x+3|﹣|x﹣9|<12;当x≥9时,|x+3|﹣|x﹣9|=x+3﹣(x﹣9)=12,综上所述,|x+3|﹣|x﹣9|的最大值为12,故答案为:≥9,12.(3)∵点C表示的数是1,点B表示的数是9,∴B、C两点之间的距离是9﹣1=8,当点Q与点C重合时,则2t=8,解得t=4,当0<t≤4时,如图1,点P表示的数是﹣3﹣t,点Q表示的数是9﹣2t,根据题意得9﹣2t﹣(﹣3﹣t)=2×2t,解得t=;当4<t≤8时,如图2,点P表示的数仍是﹣3﹣t,∵1+(2t﹣8)=2t﹣7,∴点Q表示的数是2t﹣7,根据题意得2t﹣7﹣(﹣3﹣t)=2(16﹣2t),解得t=,综上所述,第秒或第秒,点P、Q之间的距离是点B、Q之间距离的2倍.【点睛】本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键.2、【分析】直接根据有理数的乘方,算术平方根,立方根以及绝对值的性质化简各项,再进行加减运算得出答案.【详解】解:==【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.3、9【分析】根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解.【详解】解:原式【点睛】本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键.4、(1);(2)【分析】(1)把原方程化为,再利用立方根的含义解方程即可;(2)直接利用平方根的含义把原方程化为或,再解两个一次方程即可.【详解】解:(1) 解得: (2)或 解得:【点睛】本题考查的是利用立方根的含义与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.5、.【分析】先化简绝对值、计算算术平方根与立方根,再计算实数的加减法即可得.【详解】解:原式.【点睛】本题考查了算术平方根与立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.6、1【分析】直接利用零指数幂的性质以及立方根的性质、负整数指数幂的性质、有理数的乘方运算法则分别化简,再利用有理数的加减运算法则计算得出答案.【详解】解:=1+3﹣2﹣1=1.【点睛】本题主要考查了实数的混合运算,熟练掌握相关运算法则是解答本题的关键.7、能,桌面长宽分别为28cm和21cm【分析】本题可设它的长为4x,则它的宽为3x,根据面积公式列出方程解答即可求出x的值,再代入长宽的表达式,看是否符合条件即可.【详解】能做到,理由如下:设桌面的长和宽分别为4x(cm)和3x(cm),根据题意得,4x×3x=588.12x2=588.(cm)3x=3×7=21(cm).∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm,∴能够裁出一个长方形面积为588cm2并且长宽之比为4∶3的桌面,答:桌面长宽分别为28cm和21cm.【点睛】本题考察了算术平方根及列方程解应用题的知识点,读懂题意,找出等量关系列出方程是本题的关键点.8、3【分析】首先根据,求出x的值,然后代入x+17求解算术平方根即可.【详解】解:∵,∴5x+32=-8,解得:x=-8,∴x+17=-8+17=9,∵9的算术平方根为3,∴x+17的算术平方根为 3,故答案为:3.【点睛】此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念.9、【分析】先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.【详解】解:原式=1-8+4+=.【点睛】本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.10、(1)(2)【分析】(1)先用同底数幂、幂的乘方、积的乘方运算,然后再合并即可;(2)先运用算术平方根、负整数次幂、绝对值、零次幂的知识化简各数,然后再计算即可.(1)解:原式=(2)解:原式=【点睛】本题主要考查了整式的运算、实数的运算等知识点,灵活运用相关运算法则成为解答本题的关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习,共22页。试卷主要包含了a为有理数,定义运算符号▽,计算2﹣1+30=,4的平方根是,关于的叙述,错误的是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试练习,共18页。试卷主要包含了的相反数是,下列实数比较大小正确的是,﹣π,﹣3,,的大小顺序是,以下正方形的边长是无理数的是,10的算术平方根是,的值等于等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题,共21页。试卷主要包含了若,则的值为,以下正方形的边长是无理数的是,下列各数中,比小的数是,下列各式中,化简结果正确的是,对于两个有理数,3的算术平方根为等内容,欢迎下载使用。
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)