开学活动
搜索
    上传资料 赚现金

    2021-2022学年度沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项练习试卷(精选含详解)

    2021-2022学年度沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项练习试卷(精选含详解)第1页
    2021-2022学年度沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项练习试卷(精选含详解)第2页
    2021-2022学年度沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项练习试卷(精选含详解)第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试随堂练习题

    展开

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试随堂练习题,共34页。试卷主要包含了下列说法中正确的个数是,如图,直线AB等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线专项练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是( )

    A.100° B.140° C.160° D.105°
    2、如果两个角的一边在同一直线上,另一边互相平行,则这两个角( )
    A.相等 B.互补 C.互余 D.相等或互补
    3、用等腰直角三角板画∠AOB=45°,将三角板沿OB方向平移到如图所示的虚线M处后绕点M逆时针旋转22°,则三角板的斜边与射线OA的夹角α为(  )度.

    A.25° B.45° C.30° D.22°
    4、下列说法中正确的个数是(  )
    (1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c
    (2)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a⊥c
    (3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c
    (4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.
    A.1 B.2 C.3 D.4
    5、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为 ( )

    A.125° B.115° C.105° D.95°
    6、如图,直线AB、CD相交于点O,OE平分∠BOC,若∠BOD:∠BOE=1:2,则∠AOE的大小为(  )

    A.72° B.98°
    C.100° D.108°
    7、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是( )

    A.两点之间,线段最短
    B.两点之间,直线最短
    C.两点确定一条直线
    D.直线外一点与直线上各点连接的所有线段中,垂线段最短
    8、如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于(  )

    A.60° B.90° C.120° D.150°
    9、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为(  )

    A.30° B.40° C.50° D.60°
    10、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )

    A.30° B.40° C.50° D.60°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,∠1还可以用______ 表示,若∠1=62°,那么∠BCA=____ 度.

    2、如图所示,直线a,b被c所截,∠1=30°,∠2:∠3=1:5,则直线a与b的位置关系是________.

    3、如图,已知ABCD,BE平分∠ABC,DE平分∠ADC,若∠ABC =m°,∠ADC =n°,则∠E=_________°.

    4、判断正误:
    (1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角( )
    (2)如果两个角相等,那么这两个角是对顶角( )
    (3)有一条公共边的两个角是邻补角( )
    (4)如果两个角是邻补角,那么它们一定互补( )
    (5)有一条公共边和公共顶点,且互为补角的两个角是邻补角( )
    5、∠1与∠2的两边分别平行,且∠2的度数比∠1的度数的3倍少40°,那么∠2的度数为 ___.
    三、解答题(10小题,每小题5分,共计50分)
    1、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.
    (基础问题)如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).
    证明:过点G作直线MN∥AB,
    又∵AB∥CD,
    ∴MN∥CD(    )
    ∵MN∥AB,
    ∴∠A=(    )(    )
    ∵MN∥CD,
    ∴∠D=    (    )
    ∴∠AGD=∠AGM+∠DGM=∠A+∠D.
    (类比探究)如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.
    (应用拓展)如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.

    2、如图,AE=AF,以AE为直径作⊙O交EF点D,过点D作BC⊥AF,交AE的延长线于点B.
    (1)判断直线BC与⊙O的位置关系,并说明理由;
    (2)若AE=5,AC=4,求BE的长.

    3、如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°,
    (1)请判断AB与CD的位置关系并说明理由;
    (2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;
    (3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.

    4、下列语句中,有一个是错误的,其余三个都是正确的:
    ①直线EF经过点C; ②点A在直线l外;
    ③直线AB的长为5 cm; ④两条线段m和n相交于点P.
    (1)错误的语句为________(填序号).
    (2)按其余三个正确的语句,画出图形.
    5、完成下列说理过程(括号中填写推理的依据):
    已知:如图,直线AB,CD相交于点O,.求证:.

    证明:,
    .( ① )


    直线AB,CD相交于点O,


    = ② .( ③ )
    直线相交于,

    ④ .( ⑤ )

    6、完成下面的证明:
    已知:如图,∠1=30°,∠B=60°,AB⊥AC.求证:AD∥BC.

    证明:∵AB⊥AC(已知)
    ∴∠   =90°(    )
    ∵∠1=30°,∠B=60°(已知)
    ∴∠1+∠BAC+∠B=   (    )
    即∠   +∠B=180°
    ∴AD∥BC(    )
    7、如图,己知AB∥DC,AC⊥BC,AC平分∠DAB,∠B=50°,求∠D的大小.
    阅读下面的解答过程,并填括号里的空白(理由或数学式).
    解:∵AB∥DC(    ),
    ∴∠B+∠DCB=180°(    ).
    ∵∠B=(    )(已知),
    ∴∠DCB=180°﹣∠B=180°﹣50°=130°.
    ∵AC⊥BC(已知),
    ∴∠ACB=(    )(垂直的定义).
    ∴∠2=(    ).
    ∵AB∥DC(已知),
    ∴∠1=(    )(    ).
    ∵AC平分∠DAB(已知),
    ∴∠DAB=2∠1=(    )(角平分线的定义).
    ∵AB∥DC(己知),
    ∴(    )+∠DAB=180°(两条直线平行,同旁内角互补).
    ∴∠D=180°﹣∠DAB=   .

    8、如图,,P为,之间的一点,已知,,求∠1的度数.

    9、如图,107国道上有一个出口M,想在附近公路旁建一个加油站,欲使通道最短,应沿怎样的线路施工?

    10、如图1所示,MN//PQ,∠ABC与MN,PQ分别交于A、C两点
    (1)若∠MAB=∠QCB=20°,则B的度数为 度.
    (2)在图1分别作∠NAB与∠PCB的平分线,且两条角平分线交于点F.
    ①依题意在图1中补全图形;
    ②若∠ABC=n°,求∠AFC的度数(用含有n的代数式表示);
    (3)如图2所示,直线AE,CD相交于D点,且满足∠BAM=m∠MAE, ∠BCP=m∠DCP,试探究∠CDA与∠ABC的数量关系


    -参考答案-
    一、单选题
    1、B
    【分析】
    根据方位角的含义先求解 再利用角的和差关系可得答案.
    【详解】
    解:如图,标注字母,

    射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,



    故选B
    【点睛】
    本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.
    2、D
    【分析】
    根据平行线的性质,结合图形解答即可.
    【详解】
    如图,当AE∥BD时,∠EAB与∠DBC符合题意,
    ∴∠EAB=∠DBC;

    如图,当AE∥BD时,∠EAF与∠DBC符合题意,
    ∵∠EAB+∠EAF=180°,∠EAB=∠DBC,
    ∴∠DBC +∠EAF=180°,
    故选D.
    【点睛】
    本题考查了平行线的性质,熟练掌握平行线的性质,灵活运用属性结合是解题的关键.
    3、D
    【分析】
    由平移的性质知,AO∥SM,再由平行线的性质可得∠WMS=∠OWM,即可得答案.
    【详解】
    解:由平移的性质知,AO∥SM,
    故∠WMS=∠OWM=22°;
    故选D.

    【点睛】
    本题利用了两直线平行,内错角相等,及平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
    4、C
    【分析】
    根据平行线的性质分析判断即可;
    【详解】
    在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c,故(1)正确;
    在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c,故(2)错误;
    在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c,故(3)正确;
    在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.故(4)正确;
    综上所述,正确的是(1)(3)(4);
    故选C.
    【点睛】
    本题主要考查了平行线的性质,准确分析判断是解题的关键.
    5、A
    【分析】
    利用互余角的概念与邻补角的概念解答即可.
    【详解】
    解:∵∠1=35°,∠AOC=90°,
    ∴∠BOC=∠AOC−∠1=55°.
    ∵点B,O,D在同一条直线上,
    ∴∠2=180°−∠BOC=125°.
    故选:A.
    【点睛】
    本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.
    6、D
    【分析】
    根据角平分线的定义得到∠COE=∠BOE,根据邻补角的定义列出方程,解方程求出∠BOD,根据对顶角相等求出∠AOC,结合图形计算,得到答案.
    【详解】
    解:设∠BOD=x,
    ∵∠BOD:∠BOE=1:2,
    ∴∠BOE=2x,
    ∵OE平分∠BOC,
    ∴∠COE=∠BOE=2x,
    ∴x+2x+2x=180°,
    解得,x=36°,即∠BOD=36°,∠COE=72°,
    ∴∠AOC=∠BOD=36°,
    ∴∠AOE=∠COE+∠AOC=108°,
    故选:D.
    【点睛】
    本题考查的是对顶角、邻补角的概念,掌握对顶角相等、邻补角之和为180°是解题的关键.
    7、D
    【分析】
    根据垂线段最短即可完成.
    【详解】
    根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确
    故选:D
    【点睛】
    本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.
    8、C
    【分析】
    先由AB∥CD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.
    【详解】
    解:∵AB∥CD,
    ∴∠1=∠CEF,
    又∵∠2+∠CEF=180°,
    ∴∠2+∠1=180°,
    ∵∠2=2∠1,
    ∴3∠1=180°,
    ∴∠1=60°,
    ∴∠2=120°,
    故选C.

    【点睛】
    本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.
    9、D
    【分析】
    根据平行线的性质和垂直的定义解答即可.
    【详解】
    解:∵BC⊥l3交l1于点B,
    ∴∠ACB=90°,
    ∵∠2=30°,
    ∴∠CAB=180°−90°−30°=60°,
    ∵l1l2,
    ∴∠1=∠CAB=60°.
    故选:D.
    【点睛】
    此题考查平行线的性质,关键是根据平行线的性质解答.
    10、C
    【分析】
    由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.
    【详解】
    解:由题意,
    ∵∠BMN与∠AME是对顶角,
    ∴∠BMN=∠AME=130°,
    ∵AB∥CD,
    ∴∠BMN+∠DNM=180°,
    ∴∠DNM=50°;
    故选:C.
    【点睛】
    本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.
    二、填空题
    1、
    【分析】
    根据角的表示和邻补角的性质计算即可;
    【详解】
    ∠1还可以用表示;
    ∵∠1=62°,,
    ∴;
    故答案是:;.
    【点睛】
    本题主要考查了角的表示和邻补角的性质,准确计算是解题的关键.
    2、平行
    【分析】
    根据∠2:∠3=1:5,求出的度数,然后根据同位角相等两直线平行进行解答即可.
    【详解】
    解:∵∠2:∠3=1:5,
    ∴∠2=30°,
    ∴∠1=∠2,
    ∴a∥b,
    故答案为:平行.
    【点睛】
    本题考查了角的和差倍分求角度以及平行的判定,根据题意求出∠2=30°是解本题的关键.
    3、
    【分析】
    作EF∥AB,证明AB∥ EF∥CD,进而得到∠BED=∠ABE+∠CDE,根据角平分线定义得到,即可求出.
    【详解】
    解:如图,作EF∥AB,
    ∵AB∥CD,
    ∴AB∥ EF∥CD,
    ∴∠ABE=∠BEF,∠CDE=∠DEF,
    ∴∠BED=∠BEF+∠DEF=∠ABE+∠CDE,
    ∵BE平分∠ABC,DE平分∠ADC,
    ∴,
    ∴ .

    故答案为:
    【点睛】
    本题考查了平行线性质,角平分线的定义,熟知角平分线的性质和平行公理的推论,根据题意添加辅助线是解题关键.
    4、(1)×;(2)×;(3)×;(4)√;(5)×
    【分析】
    根据对顶角与邻补角的定义与性质分析判断即可求解.
    【详解】
    (1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;
    (2)如果两个角相等,那么这两个角不一定是对顶角,错误;
    (3)有一条公共边的两个角不一定是邻补角,错误;
    (4)如果两个角是邻补角,那么它们一定互补,正确;
    (5)有一条公共边和公共顶点,且互为补角的两个角不一定是邻补角,错误;
    故答案为:(1)×;(2)×;(3)×;(4)√;(5)×.
    【点睛】
    本题主要考查了对顶角的与邻补角的性质,是基础题,熟记概念与性质是解题的关键,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.
    5、20°或125°或20°
    【分析】
    根据∠1,∠2的两边分别平行,所以∠1,∠2相等或互补列出方程求解则得到答案.
    【详解】
    解:∵∠1与∠2的两边分别平行,
    ∴∠1,∠2相等或互补,
    ①当∠1=∠2时,
    ∵∠2=3∠1-40°,
    ∴∠2=3∠2-40°,
    解得∠2=20°;
    ②当∠1+∠2=180°时,
    ∵∠2=3∠1-40°,
    ∴∠1+3∠1-40°=180°,
    解得∠1=55°,
    ∴∠2=180°-∠1=125°;
    故答案为:20°或125°.
    【点睛】
    本题考查了平行线的性质的运用,关键是注意:同一平面内两边分别平行的两角相等或互补.
    三、解答题
    1、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.
    【分析】
    基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;
    类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.
    应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.
    【详解】
    解:基础问题:过点G作直线MN∥AB,
    又∵AB∥CD,
    ∴MN∥CD(平行于同一条直线的两条直线平行),
    ∵MN∥AB,
    ∴∠A=∠AGM(两直线平行,内错角相等),
    ∵MN∥CD,
    ∴∠D=∠DGM(两直线平行,内错角相等),
    ∴∠AGD=∠AGM+∠DGM=∠A+∠D.
    故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;
    类比探究:如图所示,过点G作直线MN∥AB,
    又∵AB∥CD,
    ∴MN∥CD,
    ∵MN∥AB,
    ∴∠A=∠AGM,
    ∵MN∥CD,
    ∴∠D=∠DGM,
    ∴∠AGD=∠AGM-∠DGM=∠A-∠D.

    应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,
    又∵AB∥CD,
    ∴MN∥CD,PQ∥CD
    ∵MN∥AB,PQ∥AB,
    ∴∠BAG=∠AGM,∠BAH=∠AHP,
    ∵MN∥CD,PQ∥CD,
    ∴∠CDG=∠DGM,∠CDH=∠DHP,
    ∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,
    ∴∠GDH=44°,∠DHP=22°,
    ∴∠CDG=66°,∠AHP=54°,
    ∴∠DGM=66°,∠BAH=54°,
    ∵AH平分∠BAG,
    ∴∠BAG=2∠BAH=108°,
    ∴∠AGM=108°,
    ∴∠AGD=∠AGM-∠DGM=42°.

    【点睛】
    本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.
    2、(1)BC与⊙O相切,见解析;(2).
    【分析】
    (1)连接OD,根据等腰三角形的性质得到∠OED=∠ODE,∠OED=∠F,求得∠ODE=∠F,根据平行线的判定得到OD∥AC,根据平行线的性质得到∠ODB=∠ACB,推出OD⊥BC,根据切线的判定定理即可得到结论;
    (2)根据平行线分线段成比例定理得到,于是得到结论.
    【详解】
    解:(1)BC与⊙O相切,
    理由:连接OD,
    ∵OE=OD,
    ∴∠OED=∠ODE,
    ∵AE=AF,
    ∴∠OED=∠F,
    ∴∠ODE=∠F,
    ∴OD∥AC,
    ∴∠ODB=∠ACB,
    ∵DC⊥AF,
    ∴∠ACB=90°,
    ∴∠ODB=90°,
    ∴OD⊥BC,
    ∵OD是⊙O的半径,
    ∴BC与⊙O相切;
    (2)∵OD∥AC,
    ∴,
    ∵AE=5,AC=4,
    即,
    ∴BE=.

    【点睛】
    本题考查等腰三角形的性质、切线的判定与性质、平行线的判定与性质等知识,是重要考点,掌握相关知识是解题关键.
    3、(1)平行,理由见解析;(2)∠BAE+∠MCD=90°,理由见解析;(3)∠BAC=∠PQC+∠QPC,理由见解析.
    【分析】
    (1)先根据CE平分∠ACD,AE平分∠BAC可得∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,根据平行线的判定定理即可得出结论;
    (2)如图,过E作EF∥AB,由AB//CD可得EF∥AB∥CD,根据平行线的性质可得∠BAE=∠AEF,∠FEC=∠DCE,可得∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;
    (3)如图,过点C作CM//PQ,可得∠PQC=∠MCN,∠QPC=∠PCM,根据AB∥CD可知∠BAC+∠ACD=180°,根据∠PCQ+∠PCM+∠MCN=180°,可得∠QPC+∠PQC+∠PCQ=180°,即可得出∠BAC=∠PQC+∠QPC.
    【详解】
    (1)∵CE平分∠ACD,AE平分∠BAC,
    ∴∠BAC=2∠EAC,∠ACD=2∠ACE,
    ∵∠EAC+∠ACE=90°,
    ∴∠BAC+∠ACD=180°,
    ∴AB∥CD
    (2)∠BAE+∠MCD=90°;理由如下:
    如图,过E作EF∥AB,
    ∵AB∥CD,
    ∴EF∥AB∥CD,
    ∴∠BAE=∠AEF,∠FEC=∠DCE,
    ∵∠AEC=∠AEF+∠FEC=90°,
    ∴∠BAE+∠ECD=90°,
    ∵∠MCE=∠ECD=∠MCD,
    ∴∠BAE+∠MCD=90°.

    (3)如图,过点C作CM//PQ,
    ∴∠PQC=∠MCN,∠QPC=∠PCM,
    ∵AB∥CD,
    ∴∠BAC+∠ACD=180°,
    ∵∠PCQ+∠PCM+∠MCN=180°,
    ∴∠QPC+∠PQC+∠PCQ=180°,
    ∴∠BAC=∠PQC+∠QPC.

    【点睛】
    本题考查平行线的判定与性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.
    4、(1)③;(2)见解析
    【分析】
    (1)点与直线的位置关系,直线的定义,两条直线的位置关系,逐项判断即可求解;
    (2)根据点与直线的位置关系,两条直线的位置关系,画出图形,即可求解.
    【详解】
    解:(1)①直线EF经过点C,故本说法正确;
    ②点A在直线l外,故本说法正确;
    ③因为直线向两端无限延伸,所以长度无法测量,故本说法错误;
    ④两条线段m和n相交于点P,故本说法正确;
    所以错误的语句为③;
    (2)图形如图所示:

    【点睛】
    本题主要考查了点与直线的位置关系,直线的定义,两条直线的位置关系,熟练掌握相关知识点是解题的关键.
    5、①角平分线定义;②;③等角的余角相等;④;⑤同角的补角相等
    【分析】
    根据证明过程判断从上一步到下一步的理由即可.
    【详解】
    证明:,
    .(①角平分线定义)


    直线AB,CD相交于点O,


    =②.(③等角的余角相等)
    直线相交于,

    ④.(⑤同角的补角相等)

    故答案为:①角平分线定义;②;③等角的余角相等;④;⑤同角的补角相等
    【点睛】
    本题考查了对顶角、余角和补角的性质、垂线以及角平分线的定义;弄清各个角之间的关系是解题的关键.
    6、见解析
    【分析】
    先根据垂直的定义可得,再根据角的和差可得,从而可得,然后根据平行线的判定即可得证.
    【详解】
    证明:∵(已知),
    ∴(垂直的定义),
    ∵,(已知),
    ∴(等量关系),
    即,
    ∴(同旁内角互补,两直线平行).
    【点睛】
    本题考查了垂直、平行线的判定等知识点,熟练掌握平行线的判定是解题关键.
    7、见解析.
    【分析】
    先根据平行线的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据平行线的性质可得,根据角平分线的定义可得,最后根据平行线的性质即可得.
    【详解】
    解:∵(已知),
    ∴(两直线平行,同旁内角互补).
    ∵(已知),
    ∴.
    ∵(已知),
    ∴(垂直的定义).
    ∴.
    ∵(已知),
    ∴(两直线平行,内错角相等).
    ∵平分(已知),
    ∴(角平分线的定义).
    ∵(己知),
    ∴(两条直线平行,同旁内角互补).
    ∴.
    【点睛】
    本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.
    8、30°
    【分析】
    首先过点P作射线,根据两直线平行,内错角相等,即可求得答案.
    【详解】
    过点P作射线,如图①.
    ∵,,
    ∴.
    ∴.
    ∵,∴.
    又∵.
    ∴.

    【点睛】
    此题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.
    9、作图见解析
    【分析】
    根据垂线段最短作图即可;
    【详解】
    解:如图,过点M作MN⊥,垂足为N,欲使通道最短,应沿线路MN施工.

    【点睛】
    本题主要考查了垂线段最短的应用,尺规作图,准确分析作图是解题的关键.
    10、(1)40;(2)①见解析;②;(3)m∠CDA+∠ABC=180°
    【分析】
    (1)作MN、PQ的平行线HG,根据两直线平行,内错角相等即可解答;
    (2)①根据题意作图即可,②过F作 ,根据两直线平行,同旁内角互补和内错角相等即可解答;
    (3)延长AE交PQ于点G,设∠MAE=x°,∠DCP=y°,知∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,∠BCQ=180°−my°,根据(1)中所得结论知∠ABC=mx°+180°−my°,即y°−x°= ,由MNPQ知∠MAE=∠DGP=x°,根据∠CDA=∠DCP−∠DGC可得答案.
    【详解】
    解:(1)作 ,

    ∵MN//PQ,
    ∴,
    ∴ ,
    ∴ ;
    (2)①如图所示,

    ②过点F作 ,

    ∴ ,
    ∴ ,
    ∵ ,
    ∴ ,

    ∴ ,
    ∴ ,
    ∵ ,
    ∴ ;
    (3)延长AE交PQ于点G,

    设∠MAE=x°,∠DCP=y°,则∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,
    ∴∠BCQ=180°−my°,
    由(1)知,∠ABC=mx°+180°−my°,
    ∴y°−x°=,
    ∵MNPQ,
    ∴∠MAE=∠DGP=x°,
    则∠CDA=∠DCP−∠DGC
    =y°−x°
    =,
    即m∠CDA+∠ABC=180°.
    【点睛】
    本题主要考查平行线的性质,解题的关键是掌握平行线的性质和判定等知识点.

    相关试卷

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练,共31页。试卷主要包含了如图,能判定AB∥CD的条件是,如图,在等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课堂检测:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课堂检测,共32页。试卷主要包含了如图,直线AB,下列说法中,正确的是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时练习:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时练习,共29页。试卷主要包含了如图,直线AB∥CD,直线AB等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map