数学九年级下册第26章 概率初步综合与测试课后复习题
展开
这是一份数学九年级下册第26章 概率初步综合与测试课后复习题,共22页。试卷主要包含了下列说法正确的是,下列说法错误的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在进行一个游戏时,游戏的次数和某种结果出现的频率如表所示,则该游戏是什么,其结果可能是什么?下面分别是甲、乙两名同学的答案:游戏次数1002004001000频率0.320.340.3250.332甲:掷一枚质地均匀的骰子,向上的点数与4相差1;乙:在“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”( )A.甲正确,乙错误 B.甲错误,乙正确C.甲、乙均正确 D.甲、乙均错误2、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是( )A. B. C. D.13、中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“●”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是( )A. B. C. D.4、下列说法正确的是( )A.掷一枚质地均匀的骰子,掷得的点数为3的概率是B.一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球C.连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同D.在同一年出生的400个同学中至少会有2个同学的生日相同5、下列说法错误的是( )A.必然事件发生的概率是1 B.不可能事件发生的概率为0C.随机事件发生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能发生6、下列说法正确的是( )A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上C.“彩票中奖的概率是1%”表示买100张彩票肯定会中奖D.“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近7、下列说法正确的是( )A.“买中奖率为的奖券10张,中奖”是必然事件B.“汽车累积行驶,出现一次故障”是随机事件C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D.若两组数据的平均数相同,则方差大的更稳定8、下列说法正确的是( )A.同时投掷两枚相同的硬币,出现“一正一反”的概率是B.事件“两个正数相加,和是正数”是必然事件C.数2和8的比例中项是4D.同一张底片洗出来的两张照片是位似图形9、下列说法正确的是( )A.调查“行云二号”各零部件的质量适宜采用抽样调查方式B.5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83C.某游戏的中奖率为1%,则买100张奖券,一定有1张中奖D.某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定10、在一个口袋中有2个完全相同的小球,它们的标号分别为1,2从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和是3的概率是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在发展现代化农业的形势下,现有A、B两种新玉米种子,为了了解它们的出芽情况,在推广前做了五次出芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10030050010003000A出芽率0.990.940.960.980.97B出芽率0.990.950.940.970.96下面有三个推断:①当实验种子数量为100时,两种种子的出芽率均为0.99,所以A、B两种新玉米种子出芽的概率一样;②随着实验种子数量的增加,A种子出芽率在 0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是_____________2、某批青稞种子在相同条件下发芽试验结果如下表:每次试验粒数501003004006001000发芽频数4796284380571948估计这批青稞发芽的概率是___________.(结果保留到0.01)3、从﹣2,﹣1,1,3,5五个数中随机选取一个数作为二次函数y=ax2+x﹣3中a的值,则二次函数图象开口向上的概率是 _____.4、在一个不透明的袋子中,装有若干个除颜色外都相同的小球,其中有8个红球和n个黑球,从袋中任意摸出一个球,若摸出黑球的概率是,则n=_____.5、不透明的袋子里装有一个黑球,两个红球,这些球除颜色外无其它差别,从袋子中取出一个球,不放回,再取出一个球,记下颜色,两次摸出的球是一红—黑的概率是________.三、解答题(5小题,每小题10分,共计50分)1、若关于x的一元二次方程ax2+bx+1=0,且a﹣b+3=0,该方程有一个根为1.(1)求a的值及另一个根;(2)若把该一元二次方程的二次项系数,一次项系数,常数项做成卡片,不放回地随意摸出两张卡片,求两张卡片的数字一样的概率.2、邮票素有“国家名片”之称,方寸之间,包罗万象.为宣传2022年北京冬奥会,中国邮政发行了一套冬奥会邮票,其中有一组展现雪上运动的邮票,如图所示:某班级举行冬奥会有奖问答活动,答对的同学可以随机抽取邮票作为奖品.(1)在抢答环节中,若答对一题,可从4枚邮票中任意抽取1枚作为奖品,则恰好抽到“冬季两项”的概率是___________;(2)在抢答环节中,若答对两题,可从4枚邮票中任意抽取2枚作为奖品,请用列表或画树状图的方法,求恰好抽到“高山滑雪”和“自由式滑雪”的概率.3、4张相同的卡片上分别写有数字0、1、、3,将卡片的背面朝上,洗后从中任意抽取1张,将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.(1)第一次抽取的卡片上数字是非负数的概率为______;(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)4、新冠病毒在全球肆虐,疫情防控刻不容缓.某校为了解学生对新冠疫情防控知识的了解程度,组织七、八年级学生开展新冠疫情防控知识测试(满分为10分).学校学生处从七、八年级学生中各随机抽取了20名学生的成绩进行了统计.下面提供了部分信息.抽取的20名七年级学生的成绩(单位:分)为:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5.抽取的40名学生成绩分析表:年级七年级八年级平均分88.1众 数8b中位数a8方 差1.91.89请根据以上信息,解答下列问题:(1)直接写出上表中a,b的值;(2)该校七、八年级共有学生2000人,估计此次测试成绩不低于9分的学生有多少人?(3)在所抽取的七年级与八年级得10分的学生中,随机抽取2名学生在全校学生大会上进行新冠疫情防控知识宣讲,求所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率.5、一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.甲从口袋中随机摸取一个小球,记下标号m,然后放回,再由乙从口袋中随机摸取一个小球,记下标号n,组成一个数对(m,n).(1)用列表法或画树状图法,写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各摸取一个小球,小球上标号之和为奇数则甲赢,小球上标号之和为偶数则乙赢.你认为这个游戏规则公平吗?请说明理由. -参考答案-一、单选题1、C【分析】由表可知该种结果出现的概率约为,对甲乙两人所描述的游戏进行判断即可.【详解】由表可知该种结果出现的概率约为∵掷一枚质地均匀的骰子,向上的点数有1、2、3、4、5、6∴向上的点数与4相差1有3、5∴掷一枚质地均匀的骰子,向上的点数与4相差1的概率为∴甲的答案正确又∵“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”概率为∴乙的答案正确综上所述甲、乙答案均正确.故选C.【点睛】本题考查了用频率估计概率,其做法是取多次试验发生的频率稳定值来估计概率.2、C【分析】先判断出矩形、菱形、等边三角形、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可.【详解】解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,共3个;则P(中心对称图形)=;故选:C.【点睛】本题考查中心对称图形的识别,列举法求概率,掌握中心对称图形的识别,列举法求概率是解题关键.3、C【分析】用“---”(图中虚线)的上方的黑点个数除以所有黑点的个数即可求得答案.【详解】解:观察“馬”移动一次能够到达的所有位置,即用“●”标记的有8处,位于“---”(图中虚线)的上方的有2处,所以“馬”随机移动一次,到达的位置在“---”上方的概率是,故选:C.【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4、D【分析】A中掷一枚质地均匀的骰子,出现点数为的结果相等,故可得出掷得的点数为的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设人中前个人生日均不相同,而剩余的个人的生日会有与个人的生日有相同的情况,进而判断选项的正误.【详解】解:A掷一枚质地均匀的骰子,掷得的点数为的概率是,此选项错误,不符合题意;B一个袋子里有个球从中随机摸出一个球再放回,小军摸了次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是,此选项错误,不符合题意;D在同一年出生的个同学中至少会有个同学的生日相同是正确的,此选项符合题意;故选D.【点睛】本题考察了概率.解题的关键与难点在于了解概率概念与求解.5、D【分析】根据概率的意义分别判断后即可确定正确的选项.【详解】解:A. 必然事件发生的概率是1,故该选项正确,不符合题意;B. 不可能事件发生的概率是0,故该选项正确,不符合题意;C. 随机事件发生的可能性越大,它的概率就越接近1,故该选项正确,不符合题意;D. 概率很小的事件也可能发生,故该选项不正确,符合题意;故选D【点睛】本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为0.6、D【分析】根据概率的意义去判断即可.【详解】∵“明天降雨的概率是80%”表示明天有降雨的可能性是80%,∴A说法错误;∵抛一枚硬币正面朝上的概率为”表示正面向上的可能性是,∴B说法错误;∵“彩票中奖的概率是1%”表示中奖的可能性是1%,∴C说法错误;∵“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近,∴D说法正确;故选D.【点睛】本题考查了概率的意义,正确理解概率的意义是解题的关键.7、B【分析】根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.【详解】解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;B、汽车累积行驶10000km,出现一次故障”是随机事件,故本选项正确;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项错误;故选:B.【点睛】此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.8、B【分析】根据概率的求法、随机事件、比例中项的概念、位似图形的概念判断即可.【详解】解:A、同时投掷两枚相同的硬币,出现“一正一反”的概率是,本选项说法错误,不符合题意;B、事件“两个正数相加,和是正数”是必然事件,本选项说法正确,符合题意;C、数2和8的比例中项是±4,本选项说法错误,不符合题意;D、同一张底片洗出来的两张照片是全等图形,不一定是位似图形,本选项说法错误,不符合题意;故选:B.【点睛】本题考查的是概率、随机事件、比例中项、位似图形,掌握它们的概念和性质是解题的关键.9、B【分析】分别对各个选项进行判断,即可得出结论.【详解】解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,∵40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;故选:B.【点睛】本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键.10、B【分析】列表展示所有4种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可.【详解】解:列表如下: 12123234由表知,共有4种等可能结果,其中两次摸出的小球的标号之和是3的有2种结果,所以两次摸出的小球的标号之和是3的概率为,故选:B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.二、填空题1、②③【分析】大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,据此解答可得.【详解】①在大量重复试验时,随着试验次数的增加,可以用一个事件出现的概率估计它的概率,实验种子数量为100,数量太少,不可用于估计概率,故①推断不合理;②随着实验种子数量的增加,A种子出芽率在0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97,故②推断合理;③在同样的地质环境下播种,A 种子的出芽率约为0.97,B种子的出芽率约为0.96,种子的出芽率可能会高于种子,故③正确,故答案为:②③【点睛】此题考查利用频率估计概率,理解随机事件发生的频率与概率之间的关系是解题的关键.2、0.95【分析】利用大量重复试验下事件发生的频率可以估计该事件发生的概率直接回答即可.【详解】观察表格得到这批青稞发芽的频率稳定在0.95附近,则这批青稞发芽的概率的估计值是0.95,故答案为:0.95.【点睛】此题考查了利用频率估计概率,从表格中的数据确定出这种油菜籽发芽的频率是解本题的关键.3、【分析】二次函数图象开口向上得出a>0,从所列5个数中找到a>0的个数,再根据概率公式求解可得.【详解】解:∵从﹣2,﹣1,1,3,5五个数中随机选取一个数,共有5种等可能结果,其中使该二次函数图象开口向上的有1,3,5这3种结果,∴该二次函数图象开口向上的概率为,故答案为:.【点睛】本题主要考查概率公式及二次函数的性质,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.4、【分析】根据概率公式计算即可【详解】共有个球,其中黑色球个从中任意摸出一球,摸出黑色球的概率是.解得经检验,是原方程的解故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.概率=所求情况数与总情况数之比.5、【分析】根据题意列出表格,可得6种等可能结果,其中一红—黑的有4种,再利用概率公式,即可求解.【详解】解:根据题意列出表格如下: 黑球红球1红球2黑球 红球1、黑球红球2、黑球红球1黑球、红球1 红球2、红球1红球2黑球、红球2红球1、红球2 得到6种等可能结果,其中一红—黑的有4种,所以两次摸出的球是一红—黑的概率是 .故答案为:【点睛】本题主要考查了求概率,能够利用画树状图或列表格的方法解答是解题的关键.三、解答题1、(1),另一个根为;(2)两张卡片的图案一样的概率是.【分析】(1)原方程化成ax2+(a+3)x+1=0,把x=1代入计算即可求得a的值,再利用根与系数的关系可求得另一个根;(2)得到二次项系数为2,一次项系数-1,常数项-1,利用枚举法即可求解.【详解】解:(1)∵a﹣b+3=0,即b=a+3,∴原方程为ax2+(a+3)x+1=0,∵该方程有一个根为1,∴a+(a+3) +1=0,解得:,∴方程为-2x2+x+1=0,即2x2-x-1=0,设方程的另一个根为x1,∴x1=;答:,另一个根为;(2)∵方程为2x2-x-1=0,∴二次项系数为2,一次项系数-1,常数项-1,把2,-1,-1做成卡片,不放回地随意摸出两张卡片,有(2,-1),(2,-1),(-1,-1)三种可能出现的结果,图案相同的情况有1种,故两张卡片的图案一样的概率是.【点睛】本题考查了一元二次方程的解、根与系数的关系,利用枚举法求概率,求概率的时候,应注意题中所说的随机抽取两张意思是抽取一张不放回再抽取一张,与抽取一张放回再抽一张不一样.2、(1);(2)见解析,【分析】(1)利用简单概率公式计算即可;(2)利用画树状图或列表法,计算.【详解】(1)∵事件一共有4种等可能性,抽到“冬季两项”这个事件只有1种可能性,∴恰好抽到“冬季两项”的概率是,故答案为:; (2)解:直接使用图中的序号代表四枚邮票.方法一:由题意画出树状图由树状图可知,所有可能出现的结果共有12种,即①②,①③,①④,②①,②③,②④,③①,③②,③④,④①,④②,④③,并且它们出现的可能性相等. 其中,恰好抽到“高山滑雪”和“自由式滑雪”(记为事件A)的结果有2种,即②④或④②.∴.方法二:由题意列表第二枚第一枚①②③④① ①②①③①④②②① ②③②④③③①③② ③④④④①④②④③ 由表可知,所有可能出现的结果共有12种,即①②,①③,①④,②①,②③,②④,③①,③②,③④,④①,④②,④③,并且它们出现的可能性相等. 其中,恰好抽到“高山滑雪”和“自由式滑雪”(记为事件A)的结果有2种,即②④或④②.∴ .【点睛】本题考查了简单概率计算,画树状图或列表法计算概率,熟练画树状图或列表是解题的关键.3、(1)(2)此游戏公平,理由见解析.【分析】(1)利用概率公式求解即可;(2)利用列表法列举出所有可能,进而利用概率公式进而得出甲、乙获胜的概率即可得出答案.(1)解:第一次抽取的卡片上数字是非负数的概率为,故答案为:.(2)解:列表如下: 01-230 1-231-1 -32-223 53-3-2-5 由表可知,共有12种等可能结果,其中结果为非负数的有6种结果,结果为负数的有6种结果,所以甲获胜的概率=乙获胜的概率==,∴此游戏公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.4、(1)(2)(3)【分析】(1)根据众数和中位数的概念求解可得;(2)用总人数乘以样本中七、八年级不低于9分的学生人数和所占比例即可得,(3)根据列表法求概率即可.(1)根据抽取的20名七年级学生的成绩找到第10个和第11个成绩都是8,则中位数为8,即,根据条形统计图可知9分的有6人,人数最多,则众数为9,即(2)解:∵此次测试成绩不低于9分的七年级学生有8人,八年级学生有9人∴此次测试成绩不低于9分的学生有(人)(3)解:∵七年级得10分的有2人,八年级得10分的有3人设七年级的2人分别为,八年级的3人分别列表如下, 根据列表可知,共有20种等可能结果,其中1名七年级学生和1名八年级学生的情形有12钟则所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率为【点睛】本题考查了求中位数,众数,根据样本估计总体,列表法求概率,掌握以上知识是解题的关键.5、(1)见解析;(2)这个游戏不公平,理由见解析【分析】(1)根据题意画出树状图进行求解即可;(2)根据(1)所画树状图,先得到所有的等可能性的结果数,然后分别得到小球标号之和为奇数和偶数的结果数,最后分别求出甲乙两人赢的概率即可得到答案.【详解】解:(1)列树状图如下所示:由树状图可知(m,n)所有可能出现的结果为:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3);(2)由(1)得一共有9种等可能性的结果数,其中小球上标号之和为奇数的结果数有(1,2),(2,1),(2,3),(3,2),4种等可能性的结果数,其中小球上标号之和为偶数的结果数有(1,1),(1,3),(2,2),(3,1),(3,3),5种等可能性的结果数,∴甲赢的概率为,乙赢的概率为,∴这个游戏不公平.【点睛】本题主要考查了画树状图和游戏的公平性,解题的关键在于能够熟练掌握画树状图的方法.
相关试卷
这是一份沪科版九年级下册第26章 概率初步综合与测试精练,共17页。试卷主要包含了不透明的布袋内装有形状,下列说法正确的是,下列事件是随机事件的是,下列事件中,属于必然事件的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试当堂达标检测题,共19页。试卷主要包含了下列说法中正确的是,下列事件中,是必然事件的是,下列事件是必然发生的事件是,任意掷一枚骰子,下列事件中等内容,欢迎下载使用。
这是一份初中数学第26章 概率初步综合与测试同步练习题,共19页。试卷主要包含了下列说法中正确的是,下列事件中是不可能事件的是,下列事件是必然事件的是,下列说法正确的是等内容,欢迎下载使用。