![2021-2022学年度沪科版九年级数学下册第26章概率初步定向测评试卷(含答案详解)第1页](http://www.enxinlong.com/img-preview/2/3/12707504/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪科版九年级数学下册第26章概率初步定向测评试卷(含答案详解)第2页](http://www.enxinlong.com/img-preview/2/3/12707504/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪科版九年级数学下册第26章概率初步定向测评试卷(含答案详解)第3页](http://www.enxinlong.com/img-preview/2/3/12707504/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪科版九年级下册第26章 概率初步综合与测试同步达标检测题
展开这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试同步达标检测题,共19页。试卷主要包含了下列事件中,属于随机事件的是,在一个不透明的盒子中装有红球等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、 “翻开数学书,恰好翻到第16页”,这个事件是( )
A.随机事件 B.必然事件 C.不可能事件 D.确定事件
2、若随意向如图所示的正方形内抛一粒石子,则石子落在阴影部分的概率是( )
A.1 B.1 C. D.1
3、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:
抛掷次数m | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 4000 | 5000 |
“正面向上”的次数n | 265 | 512 | 793 | 1034 | 1306 | 1558 | 2083 | 2598 |
“正面向上”的频率 | 0.530 | 0.512 | 0.529 | 0.517 | 0.522 | 0.519 | 0.521 | 0.520 |
下面有3个推断:
①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;
②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;
③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.其中所有合理推断的序号是( )
A.② B.①③ C.②③ D.①②③
4、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的小球是黑色的概率是( )
A. B. C. D.
5、下列事件中,属于随机事件的是( )
A.用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形
B.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形
C.如果一个三角形有两个角相等,那么两个角所对的边也相等
D.有两组对应边和一组对应角分别相等的两个三角形全等
6、在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回.经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的个数约为( )
A.12 B.15 C.18 D.23
7、经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,甲、乙两辆汽车经过这个十字路口时,一辆车向左转,一辆车向右转的概率是( )
A. B. C. D.
8、乒乓球比赛以11分为1局,水平相当的甲、乙两人进行乒乓球比赛,在一局比赛中,甲已经得了8分,乙只得了2分,对这局比赛的结果进行预判,下列说法正确的是( )
A.甲获胜的可能性比乙大 B.乙获胜的可能性比甲大
C.甲、乙获胜的可能性一样大 D.无法判断
9、为了深化落实“双减”工作,促进中小学生健康成长,教育部门加大了实地督查的力度,对我校学生的作业、睡眠、手机、读物、体质“五项管理”要求的落实情况进行抽样调查,计划从“五项管理”中随机抽取两项进行问卷调查,则抽到“作业”和“手机”的概率为( )
A. B. C. D.
10、书架上有本小说、本散文,从中随机抽取本恰好是小说的概率是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某农科所为了深入践行“绿水青山就是金山银山”的理念,大力开展对植物生长的研究,该农科所在相同条件下做某植物种子发芽率的试验,得到的结果如下表所示:
种子个数 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | … |
发芽种子个数 | 94 | 188 | 281 | 349 | 435 | 531 | 625 | 719 | 812 | 902 | … |
发芽种子频率 (结果保留两位小数) | 0.94 | 0.94 | 0.94 | 0.87 | 0.87 | 0.89 | 0.89 | 0.90 | 0.90 | 0.90 | … |
根据频率的稳定性,估计这种植物种子不发芽的概率是______.
2、在不透明的口袋里装有4个黑色棋子和若干白色棋子,每个棋子除颜色外完全相同.从口袋里随机摸出一个棋子,摸到黑球的概率是,则白色棋子个数为______.
3、一个不透明的口袋中装有10个黑球和若干个白球,小球除颜色外其余均相同,从中随机摸出一球记下颜色,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,由此估计口袋中白球的个数约为 _____个.
4、从3,0,,,这五个数中,随机抽取一个数作为m的值,则使函数的图象经过一、三象限,且使关于x的方程有实数根的概率是__________.
5、已知盒子里有6个黑色球和n个红色球,每个球除颜色外均相同,现蒙眼从中任取一个球,取出红色球的概率是,则n是______.
三、解答题(5小题,每小题10分,共计50分)
1、随着科技的发展,沟通方式越来越丰富.一天,甲、乙两位同学同步从“微信”“QQ”,“电话”三种沟通方式中任意选一种与同学联系.
(1)用恰当的方法列举出甲、乙两位同学选择沟通方式的所有可能;
(2)求甲、乙两位同学恰好选择同一种沟通方式的概率.
2、落实“双减”政策,丰富课后服务,为了发展学生兴趣特长,梁鄂中学七年级准备开设(窗花剪纸)、(书法绘画)、(中华武术)、(校园舞蹈)四门选修课程(每位学生必须且只选其中一门),甲、乙两位同学分别随机选择其中一门选修课程参加学习.用列表法或画树状图法求:
(1)甲、乙都选择(窗花剪纸)课程的概率;
(2)甲、乙选择同一门课程的概率.
3、一个不透明的口袋中有四个分别标号为1,2,3,4的完全相同的小球,从中随机摸取两个小球.
(1)请列举出所有可能结果;
(2)求取出的两个小球标号和等于5的概率.
4、有4个完全相同的小球,把它们分别标号为1、2、3、4,放在一个口袋中,随机的摸出一个小球然后放回,再随机的摸出一个小球.
(1)求两次摸出的球的标号相同的概率;
(2)求两次摸出的球的标号的和等于4的概率.
5、一只不透明的袋子中装有三个质地、大小都相同的小球,球面上分别标有数字-1、2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点M的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点M的纵坐标.
(1)用树状图或列表等方法,列出所有可能出现的结果;
(2)求事件A“点M落在第二象限”的概率P(A).
-参考答案-
一、单选题
1、A
【分析】
随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,根据定义逐一判断即可.
【详解】
解:“翻开数学书,恰好翻到第16页”,这个事件是随机事件;
故选A
【点睛】
本题考查的是确定事件与随机事件的概念,确定事件又分为必然事件与不可能事件,掌握“随机事件的概念”是解本题的关键.
2、A
【分析】
设正方形ABCD的边长为a,然后根据石子落在阴影部分的概率即为阴影部分面积与正方形面积的比,由此进行求解即可.
【详解】
解:如图所示,设正方形ABCD的边长为a,
∵四边形ABCD是正方形,
∴∠C=90°,
∴
,
∴,
∴石子落在阴影部分的概率是,
故选A.
【点睛】
本题主要考查了几何概率,正方形的性质,扇形面积公式,解题的关键在于能够根据题意得到石子落在阴影部分的概率即为阴影部分面积与正方形面积的比.
3、C
【分析】
根据概率公式和图表给出的数据对各项进行判断,即可得出答案.
【详解】
解:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;
②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;
③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.正确;
故选:C.
【点睛】
本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.
4、B
【分析】
用黑色的小球个数除以球的总个数即可解题.
【详解】
解:从中摸出一个小球,共有3种可能,其中摸出的小球是黑色的情况只有1种,
故摸出的小球是黑色的概率是:
故选:B.
【点睛】
本题考查概率公式,解题关键是掌握随机事件发生的概率.
5、D
【分析】
根据三角形三边关系判断A选项;根据勾股定理判断B选项;根据等腰三角形的性质:等边对等角判断C选项;根据全等三角形的判定即可判断D选项.
【详解】
A.因为,所以用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形为不可能事件,故此选项错误;
B.因为满足勾股定理,所以用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形为必然事件,故此选项错误;
C.因为三角形有两个角相等则这个三角形是等腰三角形,故等腰三角形等角对等边,所以如果一个三角形有两个角相等,那么两个角所对的边也相等为必然事件,故此选项错误;
D.根据SAS可以判断两三角形全等,但ASS不能判断两三角形全等,所以有两组对应边和一组对应角分别相等的两个三角形全等为随机事件,故此选项正确.
故选:D.
【点睛】
本题考查随机事件,随机事件可能发生也可能不发生,必然事件一定发生,不可能事件一定不发生,掌握随机事件的定义是解题的关键.
6、A
【分析】
由题意可设盒子中红球的个数x,则盒子中球的总个数x,摸到红球的频率稳定在30%左右,根据频率与概率的关系可得出摸到红球的概率为30%,再根据概率的计算公式计算即可.
【详解】
解:设盒子中红球的个数x,根据题意,得:
解得x=12,
所以盒子中红球的个数是12,
故选:A.
【点睛】
本题主要考查了利用频率估计概率以及概率求法的运用,利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;频率与概率的关系生:一般地,在大量的重复试验中,随着试验次数的增加,事件A发生的频率会稳定于某个常数p,我们称事件A发生的概率为p.
7、C
【分析】
可以采用列表法或树状图求解:可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.
【详解】
画“树形图”如图所示:
∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,
∴一辆向右转,一辆向左转的概率为;
故选C.
【点睛】
此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解
8、A
【分析】
根据事件发生的可能性即可判断.
【详解】
∵甲已经得了8分,乙只得了2分,甲、乙两人水平相当
∴甲获胜的可能性比乙大
故选A.
【点睛】
此题主要考查事件发生的可能性,解题的关键是根据题意进行判断.
9、C
【分析】
根据列表法或树状图法表示出来所有可能,然后找出满足条件的情况,即可得出概率.
【详解】
解:将作业、睡眠、手机、读物、体质“五项管理”简写为:业、睡、机、读、体,利用列表法可得:
| 业 | 睡 | 机 | 读 | 体 |
业 |
| (业,睡) | (业,机) | (业,读) | (业,体) |
睡 | (睡,业) |
| (睡,机) | (睡,读) | (睡,体) |
机 | (机,业) | (机,睡) |
| (机,读) | (机,体) |
读 | (读,业) | (读,睡) | (读,机) |
| (读,体) |
体 | (体,业) | (体,睡) | (体,机) | (体,读) |
|
根据表格可得:共有20种可能,满足“作业”和“手机”的情况有两种,
∴ 抽到“作业”和“手机”的概率为:,
故选:C.
【点睛】
题目主要考查列表法或树状图法求概率,熟练掌握列表法或树状图法是解题关键.
10、D
【分析】
概率=所求情况数与总情况数之比,再分析可得:总的情况数有5种,而随机抽取刚好是小说的情况数有3种,利用概率公式可得答案.
【详解】
解:书架上有本小说、本散文,共有本书,
从中随机抽取本恰好是小说的概率是;
故选:D.
【点睛】
本题考查的是简单随机事件的概率,掌握“概率公式求解简单随机事件的概率”是解本题的关键.
二、填空题
1、0.1
【分析】
大量重复试验下“发芽种子”的频率可以估计“发芽种子”的概率,据此求解.
【详解】
观察表格发现随着实验次数的增多频率逐渐稳定在0.9附近,
故“发芽种子”的概率估计值为0.9.
∴这种植物种子不发芽的概率是0.1.
故答案为:0.1.
【点睛】
本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.
2、12
【分析】
设白色棋子有x个,根据概率公式列方程求解即可.
【详解】
解:设白色棋子有x个,
根据题意得:,
解得:x=12,
经检验x=12是原方程的根,
故答案为:12.
【点睛】
本题考查了分式方程的应用,以及概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
3、
【分析】
先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.
【详解】
解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是=,
设口袋中大约有x个白球,则=,
解得x=20,
经检验x=20是原方程的解,
估计口袋中白球的个数约为20个.
故答案为:20.
【点睛】
本题考查了用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.
4、
【分析】
由正比例函数的图象及其性质可判断3,0,,,五个数均符合,由一元二次方程根的判别式可判断出只有,,三个数符合题意,故概率为.
【详解】
∵的图象经过一、三象限
∴
即
3,0,,,这五个数均符合
关于x的方程其中
则
令
解得时关于x的方程有实数根
故,,三个数符合题意
则P=.
故答案为:.
【点睛】
本题考查了正比例函数图象及其性质和一元二次方程根的判别式.当时正比例函数图象过第一、三象限,时正比例函数图象过第二、四象限;使用一元二次方程根的判别式,应先将方程整理成一般形式,再确定a,b,c的值.注意利用判别式可以判断方程的根的情况,反之,当方程有两个不相等的实数根时,;有两个相等的实数根时,;没有实数根时,.当时,方程有两个相等的实数根,不能说方程只有一个根.
5、6
【分析】
根据概率公式计算即可;
【详解】
由题可得,取出红色球的概率是,
∴,
∴,
经检验,是方程的解;
故答案是:6.
【点睛】
本题主要考查了概率公式的应用和分式方程求解,准确计算是解题的关键.
三、解答题
1、
(1)3种可能,分别是“微信”“QQ”,“电话”
(2)
【分析】
(1)用例举法可得甲,乙两位同学选择沟通方式都有3种可能.
(2)画树状图展示所有9种等可能的结果数,再找出恰好选中同一种沟通方式的结果数,然后根据概率公式求解.
(1)
解:甲,乙两位同学选择沟通方式都有3种可能,分别是“微信”“QQ”,“电话”.
(2)
解:画出树状图,如图所示
所有情况共有9种情况,其中恰好选择同一种沟通方式的共有3种情况, 故两人恰好选中同一种沟通方式的概率为.
【点睛】
本题考查了判断简单随机事件的可能性,利用列表法与树状图法求解等可能事件的概率;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
2、(1) ;(2)
【分析】
(1)由题意先用列表法得出所有等可能的结果数,进而用甲、乙都选择(窗花剪纸)课程的情况数除以所有等可能的结果数即可;
(2)由题意直接用甲、乙选择同一门课程的情况数除以所有等可能的结果数即可.
【详解】
解:(1)由题意列表,
| A | B | C | D |
A | A,A | A,B | A,C | A,D |
B | B,A | B,B | B,C | B,D |
C | C,A | C,B | C,C | C,D |
D | D,A | D,B | D,C | D,D |
由图表可知共有16种等可能的情况数,其中甲、乙都选择(窗花剪纸)课程的情况数为1种,
所以甲、乙都选择(窗花剪纸)课程的概率为.
(2)由(1)图表可知共有16种等可能的情况数,其中甲、乙选择同一门课程的情况数为4种,
所以甲、乙选择同一门课程的概率为.
【点睛】
本题考查列表法和画树状图法求概率,正确列表和画出树状图是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.
3、(1)见详解;(2).
【分析】
(1)根据题意通过列出相应的表格,即可得出所有可能结果;
(2)由题意利用取出的两个小球标号和等于5的结果数除以所有可能结果数即可得出答案.
【详解】
解:(1)由题意列表得:
| 1 | 2 | 3 | 4 |
1 | --- | (2,1) | (3,1) | (4,1) |
2 | (1,2) | --- | (3,2) | (4,2) |
3 | (1,3) | (2,3) | --- | (4,3) |
4 | (1,4) | (2,4) | (3,4) | --- |
所有可能的结果有12种;
(2)由(1)表格可知取出的两个小球标号和等于5的结果有(1,4)、(2,3)、(3,2)、(4,1)共4种,而所有可能的结果有12种,
所以取出的两个小球标号和等于5的概率.
【点睛】
本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
4、(1);(2)
【分析】
(1)先列出树状图,找到所有的等可能性的结果数,然后找到两次摸出的球的标号相同的结果数,最后利用概率公式求解即可;
(2)根据(1)所列树状图,找到两次摸出的球的标号和为4的结果数,利用概率公式求解即可.
【详解】
解:(1)列树状图如下所示:
由树状图可知一共有16种等可能性的结果数,其中两次摸出的球的标号相同的结果数有4种,
∴(两次摸出的球的标号相同);
(2)由树状图可知一共有16种等可能性的结果数,其中两次摸出的球的标号的和为4的结果数有(1,3),(2,2),(3,1)3种,
∴(两次摸出的球的标号的和等于4).
【点睛】
本题主要考查了树状图法或列表法求解概率,解题的关键在于能够熟练掌握树状图法或列表法求解概率.
5、(1)树状图见解析,(-1,2)、(-1,3)、(2,-1)、(2,3)、(3,-1)、(3,2);(2)
【分析】
(1)根据题意画出树状图,并列出所有可能出现的结果;
(2)根据(1)的树状图求事件A“点M落在第二象限”的概率P(A)
【详解】
解:(1)可画树状图如下:
由此可知点M的坐标有以下六种等可能性:(-1,2)、(-1,3)、(2,-1)、(2,3)、(3,-1)、(3,2).
(2)上面六种等可能性中第二象限的点M为(-1,2)、(-1,3)两种,
∴事件A“点M落在第二象限”的概率为P(A)=
【点睛】
本题考查了树状图法求概率,第二象限点的坐标特征,掌握树状图法求概率是解题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后练习题,共30页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。
这是一份初中数学第26章 概率初步综合与测试课后练习题,共19页。试卷主要包含了下列事件中是不可能事件的是,下列事件是必然事件的是,下列说法不正确的是等内容,欢迎下载使用。
这是一份2020-2021学年第26章 概率初步综合与测试习题,共19页。试卷主要包含了下列说法正确的是,下列事件是必然事件的是等内容,欢迎下载使用。