数学第十七章 方差与频数分布综合与测试同步练习题
展开京改版八年级数学下册第十七章方差与频数分布专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某厂质检部将甲,乙两人第一周每天生产合格产品的个数整理成两组数据,如表:根据数据表,说法正确的是( )
甲 | 2 | 6 | 7 | 7 | 8 |
乙 | 2 | 3 | 4 | 8 | 8 |
A.甲、乙的众数相同 B.甲、乙的中位数相同
C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差
2、为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:=13,=15:==3.6,==6.3.则麦苗又高又整齐的是( )
A.甲 B.乙 C.丙 D.丁
3、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是( )
A.频率是0.5 B.频率是0.6 C.频率是0.3 D.频率是0.4
4、小明3分钟共投篮80次,进了50个球,则小明进球的频率是( )
A.80 B.50 C.1.6 D.0.625
5、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为( ).
A.9 B.8 C.7 D.6
6、七年级若干名学生参加歌唱比赛,其预赛成绩(分数为整数)的频数分布直方图如图,成绩80分以上(不含80分)的进入决赛,则进入决赛的学生的频数和频率分别是( )
A.14,0.7 B.14,0.4 C.8,0.7 D.8,0.4
7、某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为188cm的队员换下场上身高为194cm的队员,与换人前相比,场上队员的身高()
A.平均数变小,方差变小 B.平均数变小,方差变大
C.平均数变大,方差变小 D.平均数变大,方差变大
8、已知一组数据有80个,其中最大值为140,最小值为40,取组距为10,则可分成( ).
A.11组 B.9组 C.8组 D.10组
9、为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计.下图是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是( )
A.由这两个统计图可知喜欢“科普常识”的学生有90人
B.若该年级共有1200名学生,则可估计喜爱“科普常识”的学生约有360个
C.由这两个统计图不能确定喜欢“小说”的人数
D.在扇形统计图中,“漫画”所在扇形的圆心角为
10、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的( )
A.众数 B.中位数 C.平均数 D.方差
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一组数据7,2,1,3的极差为______.
2、已知某组数据的频数为63,样本容量为90,则频率为____.
3、已知一组数据为7,2,5,x,8,它们的平均数是5,则这组数据的方差为_____.
4、已知一组数据:2,3,4,5,6,则这组数据的标准差是 __.
5、某校学生自主建立了一个学习用品义卖社团,已知八年级200名学生义卖所得金额的频数分布直方图如图所示,那么40~50元这个小组的组频率是__________.
三、解答题(5小题,每小题10分,共计50分)
1、在一组数据中,各数据与它们的平均数的差的绝对值的平均数,即叫做这组数据的“平均差”,“平均差”也能描述一组数据的离散程度,“平均差”越大,说明数据的离散程度越大.
(1)分别计算下列两组数据的“平均差”,并根据计算结果比较这两组数据的稳定性;
甲:9,11,8,12,7,13,6,14,10,10.
乙:8,9,10,11,7,12,9,11,10,13.
(2)分别计算甲、乙两组数据的方差,并根据计算结果比较这两组数据的稳定性.
2、2021年12月2日是第十个“全国交通安全日”公安部、中央网信办、中央文明办、教育部、司法部、交通运输部、应急管理部、共青团中央联合发出通知,决定自2021年11月18日起至年底,以“守法规知礼让、安全文明出行”为主题,共同组织开展第十个“全国交通安全日”群众性主题活动.某中学团委组织开展交通安全知识竞赛现从七、八年级中各随机抽取20名同学的竞赛成绩(百分制)进行整理和分析(成绩均为整数,成绩得分用x表示),共分成五个等级:A.,B.,C.,D.,E.(其中成绩大于等于90的为优秀),下面给出了部分信息.
七年级抽取的20名学生的竞赛成绩在D等级中的数据分别是:83,85,85,85,85,89.
八年级抽取的20名学生的竞赛成绩在D等级中的数据分别是:83,85,85,85,85,85,89.
七、八年级抽取的学生竞赛成绩统计表
| 平均数 | 中位数 | 众数 | 满分率 |
七年级 | 81.4 | a | 85 | |
八年级 | 83.3 | 85 | b |
根据以上信息,解答下列问题:
(1)请补全条形统计图,并直接写出a、b的值;
(2)根据以上数据分析,你认为哪个年级的竞赛成绩更好,并说明理由(写出一条理由即可);
(3)已知该校七、八年级共有1200名学生参与了知识竞赛,请估计两个年级竞赛成绩优秀的学生人数是多少?
3、为引导学生知史爱党、知史爱国,某中学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)德育处一共随机抽取了______名学生的竞赛成绩;在扇形统计图中,表示“一般”的扇形圆心角的度数为_______;
(2)将条形统计图补充完整;
(3)该校共有1400名学生,估计该校大约有多少名学生在这次竞赛中成绩优秀?
4、八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;
(2)计算乙队的平均成绩和方差;
(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是 队.
5、某校为研究学生的课余爱好情况,采取抽样调査的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次研究中,一共调查了______名学生;若该校共有1500名学生,估计全校爱好运动的学生共有_______名;
(2)补全条形统计图,并计算阅读部分圆心角是_______度;
(3)若该校九年级爱好阅读的学生有150人,估计九年级有多少学生?
-参考答案-
一、单选题
1、D
【分析】
根据出现次数最多找到众数,再判断A即可;将数据按顺序排列,找到居于中间位置的数即为中位数,再判断B即可;分别计算出平均数及方差,再判断C、D即可.
【详解】
解:A.甲的众数为7,乙的众数为8,故此项错误;
B.甲的中位数为7,乙的中位数为4,故此项错误;
C.甲的平均数为,乙的平均数为,甲的平均数>乙的平均数, 故此项错误;
D.甲的方差为,乙的方差为,甲的方差小于乙的方差,故此项正确;
故选:D.
【点睛】
此题主要考查了众数、中位数、方差和平均数,关键是掌握众数、中位数、平均数及方差的概念和方差公式.
2、D
【分析】
方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪种小麦即可.
【详解】
解:,
乙、丁的麦苗比甲、丙要高,
,
甲、丁麦苗的长势比乙、丙的长势整齐,
综上,麦苗又高又整齐的是丁,
故选:D.
【点睛】
本题主要考查了方差的意义和应用,解题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.
3、B
【分析】
根据频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数可得答案.
【详解】
解:小明进球的频率是30÷50=0.6,
故选:B.
【点睛】
此题主要考查了频率,关键是掌握计算方法.
4、D
【分析】
根据频率等于频数除以数据总和,即可求解.
【详解】
∵小明共投篮80次,进了50个球,
∴小明进球的频率=50÷80=0.625,
故选D.
【点睛】
本题主要考查频数和频率,掌握“频率等于频数除以数据总和”是解题的关键.
5、B
【分析】
根据题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案.
【详解】
解:由题意得:第四组的频数=40-(2+7+11+12)=8;
故选B.
【点睛】
本题是对频数的考查,掌握各小组频数之和等于数据总和是解题的关键.
6、D
【分析】
根据题意,成绩分式为整数,则大于80.5的频数为5+3=8,根据频率等于频数除以总数即可求得
【详解】
依题意,成绩分式为整数,则大于80.5的频数为5+3=8,
学生总数为.
则频率为.
故选D.
【点睛】
本题考查了频数分布直方图,根据题意求频数和频率,读懂题意以及统计图是解题的关键.
7、A
【分析】
由题意分别计算出原数据和新数据的平均数和方差进行比较即可得出答案.
【详解】
解:原数据的平均数为,
则原数据的方差为×[(180-188)2+(184-188)2+(188-188)2+(190-188)2+(192-188)2+(194-188)2]= ,
新数据的平均数为,
则新数据的方差为×[(180-187)2+(184-187)2+(188-187)2+(190-187)2+(188-187)2+(192-187)2]= ,
所以平均数变小,方差变小,
故选:A.
【点睛】
本题主要考查方差和平均数,一般地设n个数据,x1,x2,…xn的平均数为x,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
8、A
【分析】
据组数=(最大值-最小值)÷组距计算即可得解,注意小数部分要进位.
【详解】
解:由组数=(最大值-最小值)÷组距可得:
组数=(140-40)÷10+1=11,
故选择:A
【点睛】
本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.
9、C
【分析】
根据两个统计图的特征依次分析各选项即可作出判断,先根据其他类求得总人数,进而根据扇形统计图求得喜欢“科普常识”的学生人数,从而判断A选项,根据喜欢“科普常识”的学生所占的百分比乘以全年级人数即可判断B选项,根据总人数减去其他项的人数即可求的喜欢“小说”的人数,从而判断C选项,根据喜欢“漫画”的人数求得百分比,进而求得所占圆心角的度数从而判断D选项.
【详解】
A.喜欢“科普常识”的学生有30÷10%×30%=90人,正确,不符合题意;
B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有1200×30%=360个,正确,不符合题意;
C.喜欢“小说”的人数为30÷10%-60-90-30=120人,错误,故本选项符合题意.
D.在扇形统计图中,“漫画”所在扇形的圆心角为360°×60÷(30÷10%)=72°,正确,不符合题意;
故选C.
【点睛】
本题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
10、B
【分析】
根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.
【详解】
众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.
故选:B
【点睛】
本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.
二、填空题
1、6
【分析】
根据极差的定义:一组数据中,最大值与最小值的差即为极差,进行解答即可.
【详解】
解:一组数据7,2,1,3的极差为,
故答案为:.
【点睛】
本题考查了极差的定义,熟记定义是解本题的关键.
2、0.7
【分析】
根据频率=频数÷总数,求解即可.
【详解】
这组数据的频率63÷90=0.7,
故答案为:0.7.
【点睛】
本题考查了频率的计算公式,解答本题的关键是掌握公式:频率=频数÷总数.
3、
【分析】
先由平均数是5计算的值,再根据方差的计算公式,直接计算可得.
【详解】
解:一组数据7,2,5,,8的平均数是5,
,
,
,
故答案为:.
【点睛】
本题考查的是算术平均数和方差的计算,解题的关键是掌握方差的计算公式:一般地设个数据,,,的平均数为,则方差.
4、
【分析】
计算出平均数和方差后,再计算方差的算术平方根,即为标准差.
【详解】
解:,
,
这组数据的标准差是.
故答案为:.
【点睛】
本题考查的是标准差的计算,掌握方差的计算公式和方差与标准差的关系是解题的关键,注意标准差即方差的算术平方根.
5、0.15
【分析】
求出40~50元的人数,再根据频率=频数÷总数进行计算即可.
【详解】
解:“40~50元”的人数为:200−10−30−50−80=30(人),
“40~50元”的频率为:30÷200=0.15,
故答案为:0.15.
【点睛】
本题考查频数分布直方图,掌握频率=频数÷总数是正确解答的关键.
三、解答题
1、(1)T甲=2,T乙=1.4,乙组数据更稳定;(2)=6,=3,乙组数据更稳定
【分析】
(1)先求出甲乙两组的平均数,再利用平均差公式求出甲乙两组的平均差,再比较大小即可;
(2)根据方差公式求甲乙两组的方差,再比较大小即可.
【详解】
解:(1)∵,
∴…,
∵,
∴…,
∴,
∴乙组数据更稳定;
(2)∵,
,
,
∴乙组数据更稳定.
【点睛】
本题考查平均数,新定义平均差,方差,掌握平均数,新定义平均差,方差是解题关键.
2、(1),,统计图见解析;(2)八年级的成绩比七年级的成绩好,理由见解析;(3)估计两个年级竞赛成绩优秀的学生人数是330人.
【分析】
(1)根据中位数的定义即可得到七年级的中位数是第10名和第11名的成绩,然后确定中位数在D等级里面即可得到答案;由八年级统计图可知,八年级C等级人数=20-7-6-2-1=4人,由八年级的满分率为15%,得到八年级满分人数=20×15%=3人,即可确定八年级这20名学生成绩出现次数最多的是85,由此求解即可;
(2)七、八年级,众数与优秀率相同,可从平均数与中位数进行阐述;
(3)先算出样本中两个年级的优秀率,然后估计总体即可.
【详解】
解:(1)∵七年级一共有20人,
∴七年级的中位数是第10名和第11名的成绩,
∵七年级A等级人数=人,七年级B等级人数=人,七年级C等级人数=人,
∴七年级的中位数在D等级里面,即为,
∴;
由八年级统计图可知,八年级C等级人数=20-7-6-2-1=4人,
∵八年级的满分率为15%,
∴八年级满分人数=20×15%=3人,
∴可知八年级这20名学生成绩出现次数最多的是85,即众数为85,
∴,
补全统计图如下:
(2)∵七、八年级的众数,优秀率都相同,但是八年级的平均数大于七年级的平均数,八年级的中位数也大于七年级的中位数,
∴八年级的成绩比七年级的成绩好;
(3)由题意得:两个年级竞赛成绩优秀的学生人数人,
答:估计两个年级竞赛成绩优秀的学生人数是330人.
【点睛】
本题主要考查了中位数与众数,统计图,用样本估计总体,解题的关键在于能够熟练掌握相关知识进行求解.
3、(1)40,108°;(2)见解析;(3)估计该校大约有350名学生在这次竞赛中成绩优秀.
【分析】
(1)由成绩“良好”的学生人数除以所占百分比求出德育处一共随机抽取的学生人数,即可解决问题;
(2)把条形统计图补充完整即可;
(3)由该校共有学生人数乘以在这次竞赛中成绩优秀的学生所占的比例即可.
【详解】
解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名),
则在条形统计图中,成绩“一般”的学生人数为:40-10-16-2=12(名),
∴在扇形统计图中,成绩“一般”的扇形圆心角的度数为:360°×=108°,
故答案为:40,108°;
(2)把条形统计图补充完整如下:
(3)1400×=350(名),
即估计该校大约有350名学生在这次竞赛中成绩优秀.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
4、(1)9.5,10;(2)平均成绩9分,方差1;(3)乙
【分析】
(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;
(2)先求出乙队的平均成绩,再根据方差公式进行计算;
(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.
【详解】
解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),
则中位数是9.5分;
乙队成绩中10出现了4次,出现的次数最多,
则乙队成绩的众数是10分;
故答案为:9.5,10;
(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,
则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;
(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,
∴成绩较为整齐的是乙队;
故答案为:乙.
【点睛】
本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1−)2+(x2−)2+…+(xn−)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
5、(1)100,600;(2)图形见解析,108°;(3)500
【分析】
(1)根据娱乐的人数以及百分比求出总人数即可.再根据抽查的学生中爱好运动的学生比例计算全校爱好运动的人数.
(2)求出阅读的人数,画出条形图即可,利用360°×百分比取圆心角.
(3)根据总人数,个体,百分比之间的关系解决问题即可.
【详解】
(1)总人数=20÷20%=100(名),
若该校共有1500名学生,估计全校爱好运动的学生有1500×=600(名).
故答案为100,600.
(2)阅读人数人
圆心角=
条形图如图所示:
故答案为108.
(3)150÷30%=500(名),
答:估计九年级有500名学生.
【点睛】
本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
初中北京课改版第十七章 方差与频数分布综合与测试课后复习题: 这是一份初中北京课改版第十七章 方差与频数分布综合与测试课后复习题,共21页。试卷主要包含了篮球队5名场上队员的身高等内容,欢迎下载使用。
2021学年第十七章 方差与频数分布综合与测试课后练习题: 这是一份2021学年第十七章 方差与频数分布综合与测试课后练习题,共20页。试卷主要包含了下列说法中正确的是.,2020年某果园随机从甲等内容,欢迎下载使用。
数学第十七章 方差与频数分布综合与测试综合训练题: 这是一份数学第十七章 方差与频数分布综合与测试综合训练题,共23页。试卷主要包含了在频数分布表中,所有频数之和,在这学期的六次体育测试中,甲等内容,欢迎下载使用。