沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习
展开沪教版(上海)七年级数学第二学期第十二章实数综合练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各数,,,,其中无理数的个数有( )
A.4个 B.3个 C.2个 D.1个
2、下列各式正确的是( ).
A. B.
C. D.
3、在实数,,,,,,,1.12112111211112…(每两 个2之间依次多一个1)中,无理数有( )个
A.2 B.3 C.4 D.5
4、a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a= a;当a=-2时,▽a= 0.根据这种运算,则▽[4+▽(2-5)]的值为( )
A. B.7 C. D.1
5、计算2﹣1+30=( )
A. B.﹣1 C.1 D.
6、在,, 0, , , 0.010010001……, , -0.333…, , 3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )
A.2个 B.3个 C.4个 D.5个
7、4的平方根是( )
A.2 B.﹣2 C.±2 D.没有平方根
8、关于的叙述,错误的是( )
A.是无理数
B.面积为8的正方形边长是
C.的立方根是2
D.在数轴上可以找到表示的点
9、如果x>1,那么x﹣1,x,x2的大小关系是( )
A.x﹣1<x<x2 B.x<x﹣1<x2 C.x2<x<x﹣1 D.x2<x﹣1<x
10、下列说法正确的是( )
A.是的平方根 B.是的算术平方根 C.2是-4的算术平方根 D.的平方根是它本身
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、与最接近的整数为______.
2、实数16的平方根是___,=___,5的立方根记作___.
3、已知的小数部分是a,的整数部分是b,则a+b=_________.
4、若实数a,b互为相反数,c,d互为倒数,e是的整数部分,f是的小数部分,则代数式的值是 ___.
5、若一个正数的两个平方根分别为,则_____ ,这个正数是_________.
三、解答题(10小题,每小题5分,共计50分)
1、解方程:
(1)x2=25;
(2)8(x+1)3=125.
2、求下列各式的值:
(1)
(2)
(3)
3、我们知道,假分数可以化为整数与真分数的和的形式.例如:=1+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”.例如:像,,…,这样的分式是假分式;像,,…,这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:;.解决下列问题:
(1)写出一个假分式为: ;
(2)将分式化为整式与真分式的和的形式为: ;(直接写出结果即可)
(3)如果分式的值为整数,求x的整数值.
4、解方程,求x的值.
(1)
(2)
5、计算下列各题:
(1);
(2).
(3).
6、阅读下面的文字,解答问题.
现规定:分别用和表示实数x的整数部分和小数部分,如实数3.14的整数部分是,小数部分是;实数的整数部分是,小数部分是无限不循环小数,无法写完整,但是把它的整数部分减去,就等于它的小数部分,即就是的小数部分,所以.
(1) , ; , .
(2)如果,,求的立方根.
7、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起.
(1)用xcm表示图中空白部分的面积;
(2)当x=5cm时空白部分面积为多少?
(3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?
8、小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2的桌面,并且长宽之比为4∶3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.
9、若与互为相反数,且x≠0,y≠0,求的值.
10、阅读下面材料,并按要求完成相应问题:
定义:如果一个数的平方等于-1,记为,这个数叫做虚数单位,把形如的数叫做复数,其中是这个复数的实部,是这个复数的虚部.它的加﹑减﹑乘法运算与整式的加﹑减﹑乘法运算类似.
例如:
应用:
(1)计算
(2)如果正整数a、b满足,求a、b的值.
(3)将化为(均为实数)的形式,(即化为分母中不含的形式).
-参考答案-
一、单选题
1、C
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:,是整数,属于有理数;
是分数,属于有理数;
无理数有,,共2个
故选:C.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001……,等有这样规律的数.
2、D
【分析】
一个整数有两个平方根,这两个平方根互为相反数;如果一个数的立方等于,那么这个数叫做的立方根;据此可得结论.
【详解】
解:A、,原式错误,不符合题意;
B、,原式错误,不符合题意;
C、,原式错误,不符合题意;
D、,原式正确,符合题意;
故选:D.
【点睛】
本题考查了立方根,平方根,算数平方根,熟练掌握相关概念是解本题的关键.
3、C
【分析】
利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数.
【详解】
有理数有:,,,,一共四个.
无理数有:,,,1.12112111211112…(每两 个2之间依次多一个1),一共四个.
故选:C.
【点睛】
此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.
4、A
【分析】
定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a= a;当a=-2时,▽a= 0.先判断a的大小,然后按照题中的运算法则求解即可.
【详解】
解:且当时,▽a=a,
▽(-3)=-3,
4+▽(2-5)=4-3=1>-2,
当a>-2时,▽a=-a,
▽[4+▽(2-5)]=▽1=-1,
故选:A.
【点睛】
此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.
5、D
【分析】
利用负整数指数幂和零指数幂的意义进行化简计算即可.
【详解】
解:原式=+1=.
故选:D.
【点睛】
本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键.
6、C
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:=1,=2,,3,
∴无理数有,,,2.010101…(相邻两个1之间有1个0)共4个.
故选:C.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
7、C
【分析】
根据平方根的定义(如果一个数x的平方等于a,那么这个数x就叫做a的平方根)和性质(一个正数有两个实平方根,它们互为相反数)直接得出即可.
【详解】
解:4的平方根,
即:,
故选:C.
【点睛】
题目主要考查平方根的定义和性质,熟练掌握其性质及求法是解题关键.
8、C
【分析】
根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解.
【详解】
解:A、是无理数,该说法正确,故本选项不符合题意;
B、∵,所以面积为8的正方形边长是,该说法正确,故本选项不符合题意;
C、8的立方根是2,该说法错误,故本选项符合题意;
D、因为数轴上的点与实数是一一对应的,所以在数轴上可以找到表示的点,该说法正确,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键.
9、A
【分析】
根据,即可得到,,由此即可得到答案.
【详解】
解:∵,
∴,,
∴,
故选A.
【点睛】
本题主要考查了有理数比较大小,负整数指数幂,解题的关键在于能够熟练掌握实数比较大小的方法.
10、A
【分析】
根据平方根的定义及算术平方根的定义解答.
【详解】
解:A、是的平方根,故该项符合题意;
B、4是的算术平方根,故该项不符合题意;
C、2是4的算术平方根,故该项不符合题意;
D、1的平方根是,故该项不符合题意;
故选:A.
【点睛】
此题考查了平方根的定义及算术平方根的定义,熟记定义是解题的关键.
二、填空题
1、
【分析】
先判断再根据从而可得答案.
【详解】
解:
而
更接近的整数是
故答案为:5
【点睛】
本题考查的无理数的估算,掌握“无理数的估算方法”是解本题的关键.
2、
【分析】
分别根据平方根、算术平方根、立方根的定义依次可求解.
【详解】
解:实数16的平方根是,
=,
5的立方根记作.
故答案为:,,.
【点睛】
本题主要考查了立方根、平方根、算术平方根的定义.用到的知识点为:一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方根有2个;任意一个数的立方根只有1个.
3、
【分析】
先分别求出和的范围,得到a、b的值,再代入a+b计算即可.
【详解】
∵2<<3,2<<3,
∴a=−2,b=2,
a+b=−2+2=,
故答案为.
【点睛】
本题考查了估算无理数的大小,利用夹值法估算出和的范围是解此题的关键.
4、4-
【分析】
根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可.
【详解】
解:∵实数a、b互为相反数,
∴a+b=0,
∵c、d互为倒数,
∴cd=1,
∵3<<4,
∴的整数部分为3,e=3,
∵2<<3,
∴的小数部分为-2,即f=-2,
∴=0+1-3+-2=
故答案为:4-.
【点睛】
本题考查相反数、倒数、无理数的估算,掌握相反数、倒数的意义,以及无理数的整数部分、小数部分的表示方法是解决问题的关键.
5、
【分析】
根据平方根的性质,可得 ,从而得到 ,即可求解.
【详解】
解:∵一个正数的两个平方根分别为,
∴ ,
解得: ,
∴这个正数为 .
故答案为: ;
【点睛】
本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数是解题的关键.
三、解答题
1、(1);(2)
【分析】
(1)根据平方根的定义计算即可;
(2)根据立方根的定义计算即可;
【详解】
解:(1)x2=25
x=±5.
(2)
x+1=,
x=.
【点睛】
本题主要考查平方根、立方根,熟练掌握平方根、立方根的定义是解决本题的关键.
2、(1)6;(2);(3)
【分析】
利用立方与开立方互为逆运算进行化简求值.
【详解】
解:(1)
(2)
(3).
【点睛】
本题考查了立方与立方根.解题的关键在于正确计算开方、立方与开立方的运算.
3、(1);(2)1+;(3)x=0,1,3,4
【分析】
(1)根据定义即可求出答案.
(2)根据题意给出的变形方法即可求出答案.
(3)先将分式化为真分式与整式的和,然后根据题意即可求出x的值.
【详解】
解:(1)根据题意,是一个假分式;
故答案为:(答案不唯一).
(2);
故答案为:;
(3)∵,
∴x2=±1或x2=±2,
∴x=0,1,3,4;
【点睛】
本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型.
4、(1)或 ;(2)x=−
【分析】
(1)方程变形后,利用平方根定义开方即可求出解;
(2)把x−1可做一个整体求出其立方根,进而求出x的值.
【详解】
解:(1),
,
或 ;
(2)8(x−1)3=−27,
(x−1)3=−,
x−1=−,
x=−.
【点睛】
本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.
5、
(1)-3
(2)-6x
(3)4y-3xz
【分析】
(1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;
(2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算.
(3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.
(1)
解:原式
;
(2)
解:原式
;
(3)
解:
.
【点睛】
本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(ab)n=anbn运算法则,整式的除法,理解a0=1(a≠0),(a≠0),牢记法则是解题关键.
6、(1)1,,3,;(2)2
【分析】
(1)先估算出和的范围,再根据题目规定的表示方法写出答案即可;
(2)先估算出,的范围,即可求出a,b的值,进一步即可求出结果.
【详解】
(1)∵1<<2,3<<4,
∴[]=1,<>=−1,[]=3,<>=−3,
故答案为:1,,3,;
(2)∵2<<3,10<<11,
∴<>=a=−2,[]=b=10,
∴,
∴的立方根是2.
【点睛】
本题考查了估算无理数的大小和平方根的意义,能够估算出无理数的范围是解决问题的关键.
7、(1);(2);(3)13cm
【分析】
(1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;
(2)将x=5代入计算可得;
(3)根据题意列出方程求解即可.
【详解】
解:(1)空白部分面积为;
(2)当x=5时,空白部分面积为.
(3)根据题意得,,
解得x=13或-13(舍去),
所以,大正方形的边长为13cm
【点睛】
此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.
8、能,桌面长宽分别为28cm和21cm
【分析】
本题可设它的长为4x,则它的宽为3x,根据面积公式列出方程解答即可求出x的值,再代入长宽的表达式,看是否符合条件即可.
【详解】
能做到,理由如下:
设桌面的长和宽分别为4x(cm)和3x(cm),
根据题意得,4x×3x=588.
12x2=588.
(cm)
3x=3×7=21(cm).
∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm,
∴能够裁出一个长方形面积为588cm2并且长宽之比为4∶3的桌面,
答:桌面长宽分别为28cm和21cm.
【点睛】
本题考察了算术平方根及列方程解应用题的知识点,读懂题意,找出等量关系列出方程是本题的关键点.
9、
【分析】
根据互为相反数的和为零,可得方程,再根据等式的性质变形.
【详解】
由题意可得:,即,
∴,
∴.
【点睛】
本题考查了相反数的概念以及立方根,利用互为相反数的和为零得出方程是解题关键.
10、(1);(2)或;(3).
【分析】
(1)原式利用多项式乘以多项式法则,完全平方公式以及题中的新定义计算即可求出值;
(2)利用平方差公式计算得出答案;
(3)分子分母同乘以(2-i)后,把分母化为不含i的数后计算.
【详解】
(1)
∵
∴原式
(2)
∵
∴
∵a、b是正整数
∴或
(3)
【点睛】
本题考查了实数的运算,以及完全平方公式的运用,能读懂题意是解此题的关键,解题步骤为:阅读理解,发现信息;提炼信息,发现规律;运用规律,联想迁移;类比推理,解答问题.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题,共19页。试卷主要包含了下列等式正确的是,估算的值是在之间,下列说法中,正确的是,实数﹣2的倒数是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题,共21页。试卷主要包含了若,则的值为,以下正方形的边长是无理数的是,下列各数中,比小的数是,下列各式中,化简结果正确的是,对于两个有理数,3的算术平方根为等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练,共22页。试卷主要包含了在0.1010010001…,下列等式正确的是.,下列各数中,比小的数是,规定一种新运算,0.64的平方根是,关于的叙述,错误的是等内容,欢迎下载使用。