年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向攻克练习题(无超纲)

    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向攻克练习题(无超纲)第1页
    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向攻克练习题(无超纲)第2页
    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向攻克练习题(无超纲)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第十三章 相交线 平行线综合与测试同步测试题

    展开

    这是一份2020-2021学年第十三章 相交线 平行线综合与测试同步测试题,共30页。试卷主要包含了下列说法中,正确的是,如图,能与构成同位角的有,如图木条a等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线定向攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是( )

    A.两点之间,线段最短
    B.两点之间,直线最短
    C.两点确定一条直线
    D.直线外一点与直线上各点连接的所有线段中,垂线段最短
    2、如图所示,下列条件中,不能推出AB∥CE成立的条件是( )

    A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°
    3、直线m外一点P它到直线的上点A、B、C的距离分别是6cm、5cm、3cm,则点P到直线m的距离为( )
    A.3cm B.5cm C.6cm D.不大于3cm
    4、下列说法中,正确的是(  )
    A.从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离
    B.互相垂直的两条直线不一定相交
    C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm
    D.过一点有且只有一条直线垂直于已知直线
    5、如图,能与构成同位角的有( )

    A.4个 B.3个 C.2个 D.1个
    6、如图木条a、b、c用螺丝固定在木板a上,且,将木条a、木条b、木条c看作是在同一平面a内的三条直线AC、DF、MN,若使直线AC、直线DF达到平行的位置关系则下列描述错误的是( )

    A.木条b、c固定不动,木条a绕点B顺时针旋转20°
    B.木条b、c固定不动,木条a绕点B逆时针旋转160°
    C.木条a、c固定不动,木条b绕点E逆时针旋转20°
    D.木条a、c固定不动,木条b绕点E顺时针旋转110°
    7、如图,把长方形沿EF对折,若,则的度数为( )

    A. B. C. D.
    8、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为 ( )

    A.125° B.115° C.105° D.95°
    9、如图,,能表示点到直线(或线段)的距离的线段有( )

    A.五条 B.二条 C.三条 D.四条
    10、若∠1与∠2是内错角,则它们之间的关系是 ( )
    A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.∠1=∠2或∠1>∠2或∠1<∠2
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在四边形ABCD中,AB∥CD,AD∥BC,点F在BC的延长线上,CE平分∠DCF交AD的延长线于点E,已知∠E=35°,则∠A=___.

    2、判断正误:
    (1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角( )
    (2)如果两个角相等,那么这两个角是对顶角( )
    (3)有一条公共边的两个角是邻补角( )
    (4)如果两个角是邻补角,那么它们一定互补( )
    (5)有一条公共边和公共顶点,且互为补角的两个角是邻补角( )
    3、如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系______ .

    4、填写推理理由
    如图:EF∥AD,∠1=∠2,∠BAC=70°,把求∠AGD的过程填写完整.

    证明:∵EF∥AD
    ∴∠2=________(______________)
    又∵∠1=∠2
    ∴∠1=∠3________
    ∴AB∥________(____________)
    ∴∠BAC+________=180°(___________)
    又∵∠BAC=70°
    ∴∠AGD=________
    5、如图,若,被所截,则与______________是内错角.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图直线,直线与分别和交于点交直线b于点C.

    (1)若,直接写出 ;
    (2)若,则点B到直线的距离是 ;
    (3)在图中直接画出并求出点A到直线的距离.
    2、如图,运动会上,小明自踏板M处跳到沙坑P处,甲、乙、丙三名同学分别测得PM=3.25米,PN=3.15米,PF=3.21米,则小明的成绩为 _____米.(填具体数值)

    3、如图,在边长为1的正方形网格中,点A、B、C、D都在格点上.按要求画图:
    (1)如图a,在线段AB上找一点P,使PC+PD最小.
    (2)如图b,在线段AB上找一点Q,使CQ⊥AB,画出线段CQ.
    (3)如图c,画线段CM∥AB.要求点M在格点上.

    4、如图,已知AEBF,AC⊥AE,BD⊥BF,AC与BD平行吗?补全下面的解答过程(理由或数学式).
    解:∵AEBF,
    ∴∠EAB= .( )
    ∵AC⊥AE,BD⊥BF,
    ∴∠EAC=90°,∠FBD=90°.
    ∴∠EAC=∠FBD( )
    ∴∠EAB﹣ =∠FBG﹣ ,
    即∠1=∠2.
    ∴ ( ).

    5、作图并计算:如图,点O在直线上.

    (1)画出的平分线(不必写作法);
    (2)在(1)的前提下,若,求的度数.
    6、如图所示,M、N是直线AB上两点,∠1=∠2,问∠1与∠2,∠3与∠4是对顶角吗? ∠1与∠5,∠3与∠6是邻补角吗?

    7、如图1,在平面直角坐标系中,,,且满足,过作轴于.

    (1)求,的值;
    (2)在轴上是否存在点P,使得和的面积相等,若存在,求出点P坐标,若不存在,试说明理由.
    (3)若过作交轴于,且,分别平分,,如图2,图3,
    ①求:的度数;
    ②求:的度数.
    8、如图,平面上有三个点A、B、C.

    (1)根据下列语句按要求画图.
    ①画射线AB,用圆规在线段AB的延长线上截取BD=AB(保留作图痕迹);
    ②连接CA、CD、CB;
    ③过点C画CE⊥AD,垂足为点E;
    ④过点D画DF∥AC,交CB的延长线于点F.
    (2)①在线段CA、CE、CD中,线段_________最短,依据是_________.
    ②用刻度尺或圆规检验DF与AC的大小关系为_________.
    9、在三角形ABC中,于D,F是BC上一点,于H,E在AC上,.

    (1)如图1,求证:;
    (2)如图2,若,请直接写出图中与互余的角,不需要证明.
    10、如图1所示,MN//PQ,∠ABC与MN,PQ分别交于A、C两点
    (1)若∠MAB=∠QCB=20°,则B的度数为 度.
    (2)在图1分别作∠NAB与∠PCB的平分线,且两条角平分线交于点F.
    ①依题意在图1中补全图形;
    ②若∠ABC=n°,求∠AFC的度数(用含有n的代数式表示);
    (3)如图2所示,直线AE,CD相交于D点,且满足∠BAM=m∠MAE, ∠BCP=m∠DCP,试探究∠CDA与∠ABC的数量关系


    -参考答案-
    一、单选题
    1、D
    【分析】
    根据垂线段最短即可完成.
    【详解】
    根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确
    故选:D
    【点睛】
    本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.
    2、B
    【分析】
    根据平行线的判定定理分析即可.
    【详解】
    A、∠A和∠ACE是AB与CE被AC所截形成的内错角,则∠A=∠ACE时,可以推出AB∥CE,不符合题意;
    B、∠B和∠ACE不属于AB与CE被第三条直线所截形成的任何角,则∠B=∠ACE时,无法推出AB∥CE,符合题意;
    C、∠B和∠ECD是AB与CE被BD所截形成的同位角,则∠B=∠ECD时,可以推出AB∥CE,不符合题意;
    D、∠B和∠BCE AB与CE被BD所截形成的同旁内角,则∠B+∠BCE=180°时,可以推出AB∥CE,不符合题意;
    故选:B.
    【点睛】
    本题考查平行线的判定,理解并熟练运用平行线的判定定理是解题关键.
    3、D
    【分析】
    根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答.
    【详解】
    解:垂线段最短,
    点到直线的距离,
    故选:D.
    【点睛】
    本题考查了点到直线的距离的定义和垂线段的性质,解题的关键是掌握垂线段最短.
    4、C
    【分析】
    根据点到直线距离的定义分析,可判断选项A和C;根据相交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D,从而完成求解.
    【详解】
    从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;
    在同一平面内,互相垂直的两条直线一定相交,即选项B错误;
    直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;
    在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;
    故选:C.
    【点睛】
    本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.
    5、B
    【分析】
    根据同位角的定义判断即可;
    【详解】
    如图,与能构成同位角的有:∠1,∠2,∠3.

    故选B.
    【点睛】
    本题主要考查了同位角的判断,准确分析判断是解题的关键.
    6、D
    【分析】
    根据同位角相等,两直线平行,逐项判断即可.
    【详解】
    解:A、木条b、c固定不动,木条a绕点B顺时针旋转20°,此时 ,则 ,有 ,故本选项正确,不符合题意;
    B、木条b、c固定不动,木条a绕点B逆时针旋转160°,此时 ,则 ,有 ,故本选项正确,不符合题意;
    C、木条a、c固定不动,木条b绕点E逆时针旋转20°,此时 ,则 ,有 ,故本选项正确,不符合题意;
    D、木条a、c固定不动,木条b绕点E顺时针旋转110°,木条b、c重合,则 ,故本选项错误,符合题意.
    故选:D.
    【点睛】
    本题主要考查了平行线的判定,图形的旋转,熟练掌握同位角相等,两直线平行是解题的关键.
    7、B
    【分析】
    根据折叠的性质及∠1=50°可求出∠BFE的度数,再由平行线的性质即可得到∠AEF的度数.
    【详解】
    解:根据折叠以及∠1=50°,得
    ∠BFE=∠BFG=(180°﹣∠1)=65°.
    ∵AD∥BC,
    ∴∠AEF=180°﹣∠BFE=115°.
    故选:B.
    【点睛】
    本题考查的是平行线的性质及图形翻折变换的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    8、A
    【分析】
    利用互余角的概念与邻补角的概念解答即可.
    【详解】
    解:∵∠1=35°,∠AOC=90°,
    ∴∠BOC=∠AOC−∠1=55°.
    ∵点B,O,D在同一条直线上,
    ∴∠2=180°−∠BOC=125°.
    故选:A.
    【点睛】
    本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.
    9、A
    【分析】
    直接利用点到直线的距离的定义分析得出答案.
    【详解】
    解:线段的长是点到的距离,
    线段的长是点到的距离,
    线段的长是点到的距离,
    线段的长是点到的距离,
    线段的长是点到的距离,
    故图中能表示点到直线距离的线段共有五条.
    故选:A.
    【点睛】
    此题考查了点到直线的距离.解题的关键是掌握点到直线的距离的定义,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.
    10、D
    【分析】
    根据内错角角的定义和平行线的性质判断即可.
    【详解】
    解:∵只有两直线平行时,内错角才可能相等,
    ∴根据已知∠1与∠2是内错角可以得出∠1=∠2或∠1>∠2或∠1<∠2,
    三种情况都有可能,
    故选D.
    【点睛】
    本题考查了内错角和平行线的性质,能理解内错角的定义是解此题的关键.
    二、填空题
    1、110︒度
    【分析】
    根据平行线的性质和角平分线的性质可得结论.
    【详解】
    解:∵AD//BC

    ∵CE平分∠DCF


    ∵AB//CD

    ∵AD//BC


    故答案为:110︒
    【点睛】
    本题主要考查了角的平分线以及平行线的性质,熟练掌握平行线的性质是解答本题的关键.
    2、(1)×;(2)×;(3)×;(4)√;(5)×
    【分析】
    根据对顶角与邻补角的定义与性质分析判断即可求解.
    【详解】
    (1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;
    (2)如果两个角相等,那么这两个角不一定是对顶角,错误;
    (3)有一条公共边的两个角不一定是邻补角,错误;
    (4)如果两个角是邻补角,那么它们一定互补,正确;
    (5)有一条公共边和公共顶点,且互为补角的两个角不一定是邻补角,错误;
    故答案为:(1)×;(2)×;(3)×;(4)√;(5)×.
    【点睛】
    本题主要考查了对顶角的与邻补角的性质,是基础题,熟记概念与性质是解题的关键,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.
    3、平行
    【分析】
    过点作,根据两直线平行,同旁内角互补,从而出,即可得出结果.
    【详解】
    解:过点作,

    ∴,
    ∵∠BAC+∠ACE+∠CEF=360°,
    ∴,
    ∴,
    ∴,
    故答案为:平行.
    【点睛】
    本题考查了平行线的判定与性质以及平行线的推论,根据题意作出合理的辅助线是解本题的关键.
    4、∠3 两直线平行,同位角相等 等量代换 DG 内错角相等,两直线平行 ∠AGD 两直线平行,同旁内角互补 110°
    【分析】
    根据平行线的判定与性质,求解即可.
    【详解】
    ∵EF∥AD,
    ∴∠2=∠3,(两直线平行,同位角相等)
    又∵∠1=∠2,
    ∴∠1=∠3,(等量代换)
    ∴AB∥DG.(内错角相等,两直线平行)
    ∴∠BAC+∠AGD=180°.(两直线平行,同旁内角互补)
    又∵∠BAC=70°,
    ∴∠AGD=110°.
    故答案是:∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补,110°
    【点睛】
    此题考查了平行线的判定与性质,解题的关键是掌握平行线的判定方法与性质.
    5、
    【分析】
    根据内错角的定义填空即可.
    【详解】
    解:与是内错角,
    故答案为
    【点睛】
    本题主要考查内错角的定义,解答此类题确定三线八角是关键,可直接从截线入手.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.
    三、解答题
    1、(1);(2)4;(3)作图见详解;点A到直线BC的距离为.
    【分析】
    (1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;
    (2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;
    (3)过点A作,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.
    【详解】
    解:(1)∵,
    ∴,
    ∵,,
    ∴,
    故答案为:;
    (2)∵,
    ∴点B到直线AC的距离为线段,
    故答案为:4;
    (3)如图所示:过点A作,点A到直线BC的距离为线段AD的长度,

    ∵,
    ∴为直角三角形,
    ∴SΔABC=12×AC×AB=12×BC×AD,
    即,
    解得:,
    ∴点A到直线BC的距离为.
    【点睛】
    题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.
    2、3.15
    【分析】
    根据跳远的距离应该是起跳板到P点的垂线段的长度进行求解即可
    【详解】
    解:由图形可知,小明的跳远成绩应该为PN的长度,即3.15米,
    故答案为:3.15.
    【点睛】
    本题主要考查了点到直线的距离,熟练掌握点到直线的距离的定义是解题的关键.
    3、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)根据两点之间线段最短即连接CD,则CD与线段AB交于点P,此时PC+PD最小;
    (2)根据图b可知∠B=45°,然后可在线段AB上找一点Q,使∠QCB=45°,则有CQ⊥AB,画出线段CQ;
    (3)根据网格图c可知∠A=45°,然后再格点中找到∠MCA=45°,则有∠A=∠MCA=45°,进而可知CM∥AB.
    【详解】
    解:(1)如图a,点P即为所求;

    (2)如图b,点Q和线段CQ即为所求;


    (3)如图c,线段CM即为所求.
    【点睛】
    本题主要考查格点作图及结合了垂直的定义、平行线的性质等知识点,熟练掌握格点作图是解题的关键.
    4、∠FBG;两直线平行,同位角相等;等量代换;∠EAC;∠FBD;AC;BD;同位角相等,两直线平行
    【分析】
    由平行线的性质得∠EAB=∠FBD+∠2,再证∠1=∠2,然后由平行线的判定即可得出结论.
    【详解】
    ∵AE∥BF,
    ∴∠EAB=∠FBG(两直线平行,同位角相等).
    ∵AC⊥AE,BD⊥BF,
    ∴∠EAC=90°,∠FBD=90°.
    ∴∠EAC=∠FBD(等量代换),
    ∴∠EAB﹣∠EAC=∠FBG﹣∠FBD,
    即∠1=∠2.
    ∴AC∥BD(同位角相等,两直线平行).
    故答案为:∠FBG;两直线平行,同位角相等;等量代换;∠AEC,∠FBD;AC,BD,同位角相等,两直线平行.
    【点睛】
    本题考查平行线的判定与性质,掌握平行线的判定与性质是解题的关键.
    5、(1)见解析;(2)150°
    【分析】
    (1)根据画角平分线的方法,画出角平分线即可;
    (2)先求出的度数,然后由角平分线的定义,即可求出答案.
    【详解】
    解:(1)如图,OD即为平分线

    (2)解:∵,
    ∴,

    ∴;
    【点睛】
    本题考查了角平分线的定义,画角平分线,解题的关键是掌握角平分线的定义进行解题.
    6、∠1和∠2,∠3和∠4都不是对顶角,∠1与∠5,∠3与∠6也都不是邻补角
    【分析】
    根据对顶角和邻补角的定义求解即可.
    【详解】
    解:根据对顶角的定义可得:∠1和∠2,∠3和∠4都不是对顶角;
    根据邻补角的定义可得,∠1与∠5,∠3与∠6也都不是邻补角.
    【点睛】
    此题考查了邻补角和对顶角的定义,解题的关键是掌握邻补角和对顶角的有关定义,牢记两条直线相交,才能产生对顶角或邻补角.两个角有公共点顶点,且角的一边重合、另一条边互为反向延长线,这样的两个角叫做邻补角,对顶角是指角的顶点重合,角的两条边分别互为反向延长线的角。
    7、(1),;(2)存在,或;(3)①;②
    【分析】
    (1)根据非负数的和为零,则每一个数为零,列等式计算即可;
    (2)设点P的坐标为(n,0),根据题意,等高等底的两个三角形的面积相等,确定OP=AB=8即|n|=8,化简绝对值即可;
    (3)①利用平行线性质,得内错角相等,运用直角三角形的两个锐角互余求解;
    ②作,利用平行线的性质,角的平分线的定义,计算即可.
    【详解】
    解:(1)∵,
    ∴m+4=0,n-4=0,
    ∴,.
    (2)存在,
    设点P的坐标为(n,0),则OP=|n|,
    ∵A(-4,0),C(4,4),
    ∴B(4,0),AB=4-(-4)=8,
    ∵,,且和的面积相等,
    ∴,
    ∴OP=AB=8,
    ∴|n|=8,
    ∴n=8或n=-8,
    ∴或;
    (3)①∵,
    ∴,
    又∵,
    ∴.
    ②作,如图,

    ∵,
    ∴,
    ∴,,
    ∴,
    ∵,分别平分,,
    ∴,,
    ∴,
    即.
    【点睛】
    本题考查了非负数的性质,平行线的性质,互余即两个角的和为90°,角的平分线即把从角的顶点引一条射线,把这个角分成相等的两个角;坐标的意义,熟练掌握平行线的性质,是解题的关键.
    8、(1)见解析;(2)①;垂线段最短;②相等
    【分析】
    (1)根据题意作图即可;
    (2)根据垂线段最短以及圆规进行检验即可.
    【详解】
    (1)如图所示,即为所求;

    (2)①根据垂线段最短可知,在线段CA、CE、CD中,线段CE最短;
    ②用圆规检验DF=AC.
    【点睛】
    本题主要考查了画平行线,画垂线,画线段,垂线段最短等等,熟知相关知识是解题的关键.
    9、
    (1)证明见解析;
    (2).
    【分析】
    (1)由垂直于同一条直线的两直线平行可推出.再根据平行线的性质可得出,即得出.最后根据平行线的判定条件,即可判断;
    (2)由可推出,,即得出,.由,可推出,即得出.由,可直接推出.由此即可判断哪些角与互余.
    (1)
    证明:∵,,
    ∴,
    ∴.
    ∵,
    ∴,
    ∴.
    (2)
    与互余的角有:.
    证明:∵,
    ∴,,
    ∴,.
    ∵,
    ∴,
    ∴.
    ∵,
    ∴,即.
    综上,可知与互余的角有:.
    【点睛】
    本题考查平行线的判定和性质,余角的概念.熟练掌握平行线的判定条件和性质是解答本题的关键.
    10、(1)40;(2)①见解析;②;(3)m∠CDA+∠ABC=180°
    【分析】
    (1)作MN、PQ的平行线HG,根据两直线平行,内错角相等即可解答;
    (2)①根据题意作图即可,②过F作 ,根据两直线平行,同旁内角互补和内错角相等即可解答;
    (3)延长AE交PQ于点G,设∠MAE=x°,∠DCP=y°,知∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,∠BCQ=180°−my°,根据(1)中所得结论知∠ABC=mx°+180°−my°,即y°−x°= ,由MNPQ知∠MAE=∠DGP=x°,根据∠CDA=∠DCP−∠DGC可得答案.
    【详解】
    解:(1)作 ,

    ∵MN//PQ,
    ∴,
    ∴ ,
    ∴ ;
    (2)①如图所示,

    ②过点F作 ,

    ∴ ,
    ∴ ,
    ∵ ,
    ∴ ,

    ∴ ,
    ∴ ,
    ∵ ,
    ∴ ;
    (3)延长AE交PQ于点G,

    设∠MAE=x°,∠DCP=y°,则∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,
    ∴∠BCQ=180°−my°,
    由(1)知,∠ABC=mx°+180°−my°,
    ∴y°−x°=,
    ∵MNPQ,
    ∴∠MAE=∠DGP=x°,
    则∠CDA=∠DCP−∠DGC
    =y°−x°
    =,
    即m∠CDA+∠ABC=180°.
    【点睛】
    本题主要考查平行线的性质,解题的关键是掌握平行线的性质和判定等知识点.

    相关试卷

    七年级下册第十三章 相交线 平行线综合与测试测试题:

    这是一份七年级下册第十三章 相交线 平行线综合与测试测试题,共30页。试卷主要包含了下列说法中,正确的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试,共28页。试卷主要包含了如图,下列条件中能判断直线的是,如图,直线AB,下列说法中正确的有等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步达标检测题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步达标检测题,共30页。试卷主要包含了如图所示,下列说法错误的是,如图,∠1与∠2是同位角的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map