年终活动
搜索
    上传资料 赚现金

    2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题测评试卷(无超纲带解析)

    2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题测评试卷(无超纲带解析)第1页
    2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题测评试卷(无超纲带解析)第2页
    2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题测评试卷(无超纲带解析)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第十三章 相交线 平行线综合与测试一课一练

    展开

    这是一份2020-2021学年第十三章 相交线 平行线综合与测试一课一练,共29页。试卷主要包含了如图,不能推出a∥b的条件是,如图,能与构成同位角的有等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线专题测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )

    A.40° B.36° C.44° D.100°
    2、如图,下列条件能判断直线l1//l2的有( )
    ①;②;③;④;⑤

    A.1个 B.2个 C.3个 D.4个
    3、下列说法中正确的个数是(  )
    (1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c
    (2)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a⊥c
    (3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c
    (4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.
    A.1 B.2 C.3 D.4
    4、如图,不能推出a∥b的条件是(  )

    A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°
    5、如图,能与构成同位角的有( )

    A.4个 B.3个 C.2个 D.1个
    6、如图,AB∥CD,AE∥CF,∠A=41°,则∠C的度数为( )

    A.139° B.141° C.131° D.129°
    7、如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是(  )

    A.3.5 B.4 C.5 D.5.5
    8、如图,,能表示点到直线(或线段)的距离的线段有( )

    A.五条 B.二条 C.三条 D.四条
    9、如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为(  )

    A.140° B.100° C.80° D.40°
    10、如图,木工用图中的角尺画平行线的依据是( )

    A.垂直于同一条直线的两条直线平行
    B.平行于同一条直线的两条直线平行
    C.同位角相等,两直线平行
    D.经过直线外一点,有且只有一条直线与这条直线平行
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,AB∥CD,∠EGB=50°,则∠CHG的大小为 _____.

    2、如图,将一副三角板按如图所示的方式摆放,AC∥DF,BC与EF相交于点G,则∠CGF度数为 _____度.

    3、如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数为________.

    4、判断正误:
    (1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角( )
    (2)如果两个角相等,那么这两个角是对顶角( )
    (3)有一条公共边的两个角是邻补角( )
    (4)如果两个角是邻补角,那么它们一定互补( )
    (5)有一条公共边和公共顶点,且互为补角的两个角是邻补角( )
    5、如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD于点G,若∠1=∠BEF=68°,则∠EGF的度数为_______.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,AB与EF交于点B,CD与EF交于点D,根据图形,请补全下面这道题的解答过程.

    (1)∵∠1=∠2(已知)
    ∴ CD( )
    ∴∠ABD+∠CDB = ( )
    (2)∵∠BAC =65°,∠ACD=115°,( 已知 )
    ∴∠BAC+∠ACD=180° (等式性质)
    ∴ABCD ( )
    (3)∵CD⊥AB于D,EF⊥AB于F,∠BAC=55°(已知)
    ∴∠ABD=∠CDF=90°( 垂直的定义)
    ∴ (同位角相等,两直线平行)
    又∵∠BAC=55°,(已知)
    ∴∠ACD = ( )
    2、将一个含有60°角的三角尺ABC的直角边BC放在直线MN上,其中∠ABC=90°,∠BAC=60°.点D是直线MN上任意一点,连接AD,在∠BAD外作∠EAD,使∠EAD=∠BAD.
    (1)如图,当点D落在线段BC上时,若∠BAD=18°,求∠CAE的度数;
    (2)当点E落在直线AC上时,直接写出∠BAD的度数;
    (3)当∠CAE:∠BAD=7:4时,直接写出写∠BAD的度数.

    3、如图,己知AB∥DC,AC⊥BC,AC平分∠DAB,∠B=50°,求∠D的大小.
    阅读下面的解答过程,并填括号里的空白(理由或数学式).
    解:∵AB∥DC(    ),
    ∴∠B+∠DCB=180°(    ).
    ∵∠B=(    )(已知),
    ∴∠DCB=180°﹣∠B=180°﹣50°=130°.
    ∵AC⊥BC(已知),
    ∴∠ACB=(    )(垂直的定义).
    ∴∠2=(    ).
    ∵AB∥DC(已知),
    ∴∠1=(    )(    ).
    ∵AC平分∠DAB(已知),
    ∴∠DAB=2∠1=(    )(角平分线的定义).
    ∵AB∥DC(己知),
    ∴(    )+∠DAB=180°(两条直线平行,同旁内角互补).
    ∴∠D=180°﹣∠DAB=   .

    4、作图并计算:如图,点O在直线上.

    (1)画出的平分线(不必写作法);
    (2)在(1)的前提下,若,求的度数.
    5、如图所示,从标有数字的角中找出:
    (1)直线CD和AB被直线AC所截构成的内错角.
    (2)直线CD和AC被直线AD所截构成的同位角.
    (3)直线AC和AB被直线BC所截构成的同旁内角.

    6、已知如图,∠ABC=∠ADC,BF、DE分别是∠ABC、∠ADC的角平分线,∠1=∠2,那么CD与AB平行吗?写出推理过程.

    7、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.

    (1)如果∠2=∠3,那么____________.(____________,____________)
    (2)如果∠2=∠5,那么____________.(____________,____________)
    (3)如果∠2+∠1=180°,那么____________.(____________,____________)
    (4)如果∠5=∠3,那么____________.(____________,____________)
    8、已知直线AB和CD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD.

    (1)当α=30°时,则∠EOC=_________°;∠FOD=_________°.
    (2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?
    (3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间为_________秒.
    9、如图,方格纸中每个小正方形的边长都是1.
    (1)过点P分别画PM∥AC、PN∥AB,PM与AB相交于点M,PN与AC相交于点N.
    (2)求四边形PMAN的面积.

    10、如图直线,直线与分别和交于点交直线b于点C.

    (1)若,直接写出 ;
    (2)若,则点B到直线的距离是 ;
    (3)在图中直接画出并求出点A到直线的距离.

    -参考答案-
    一、单选题
    1、A
    【分析】
    首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
    【详解】
    ∵∠1=40°,∠2=40°,
    ∴∠1=∠2,
    ∴PQMN,
    ∴∠4=180°﹣∠3=40°,
    故选:A.
    【点睛】
    本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
    2、D
    【分析】
    根据平行线的判定定理进行依次判断即可.
    【详解】
    ①∵∠1,∠3互为内错角,∠1=∠3,∴;
    ②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;
    ③∠4,∠5互为同位角,∠4=∠5,∴;
    ④∠2,∠3没有位置关系,故不能证明 ,
    ⑤,,
    ∴∠1=∠3,
    ∴,
    故选D.
    【点睛】
    此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.
    3、C
    【分析】
    根据平行线的性质分析判断即可;
    【详解】
    在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c,故(1)正确;
    在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c,故(2)错误;
    在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c,故(3)正确;
    在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.故(4)正确;
    综上所述,正确的是(1)(3)(4);
    故选C.
    【点睛】
    本题主要考查了平行线的性质,准确分析判断是解题的关键.
    4、B
    【分析】
    根据平行线的判定方法,逐项判断即可.
    【详解】
    解:、和是一对内错角,当时,可判断,故不符合题意;
    、和是邻补角,当时,不能判定,故符合题意;
    、和是一对同位角,当时,可判断,故不合题意;
    、和是一对同旁内角,当时,可判断,故不合题意;
    故选B.
    【点睛】
    本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
    5、B
    【分析】
    根据同位角的定义判断即可;
    【详解】
    如图,与能构成同位角的有:∠1,∠2,∠3.

    故选B.
    【点睛】
    本题主要考查了同位角的判断,准确分析判断是解题的关键.
    6、A
    【分析】
    如图,根据AECF,得到∠CGB=41°,根据ABCD,即可得到∠C=139°..
    【详解】
    解:如图,∵AECF,
    ∴∠A=∠CGB=41°,
    ∵ABCD,
    ∴∠C=180°-∠CGB=139°.

    故选:A
    【点睛】
    本题考查了平行线的性质,熟知平行线的性质是解题关键.
    7、D
    【分析】
    直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.
    【详解】
    ∵过点A作AB⊥l于点B,在直线l上取一点C,连接AC,使AC=AB,P在线段BC上连接AP.
    ∵AB=3,
    ∴AC=5,
    ∴3≤AP≤5,
    故AP不可能是5.5,
    故选:D.
    【点睛】
    本题考查了垂线段最短,正确得出AP的取值范围是解题的关键.
    8、A
    【分析】
    直接利用点到直线的距离的定义分析得出答案.
    【详解】
    解:线段的长是点到的距离,
    线段的长是点到的距离,
    线段的长是点到的距离,
    线段的长是点到的距离,
    线段的长是点到的距离,
    故图中能表示点到直线距离的线段共有五条.
    故选:A.
    【点睛】
    此题考查了点到直线的距离.解题的关键是掌握点到直线的距离的定义,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.
    9、B
    【分析】
    根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.
    【详解】
    解:∵∠AOE+∠BOE=180°,
    ∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,
    又∵OE平分∠AOC,
    ∴∠AOE=∠COE=40°,
    ∴∠BOC=∠BOE﹣∠COE
    =140°﹣40°
    =100°,
    故选:B.
    【点睛】
    本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.
    10、C
    【分析】
    由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断.
    【详解】
    由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行.
    故选:C
    【点睛】
    本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题.
    二、填空题
    1、130°
    【分析】
    根据平行线的性质可得∠EHD=∠EGB=50°,再利用邻补角的性质可求解.
    【详解】
    解:∵AB∥CD,∠EGB=50°,
    ∴∠EHD=∠EGB=50°,
    ∴∠CHG=180°﹣∠EHD=130°.
    故答案为:130°.
    【点睛】
    本题主要考查平行线的性质,邻补角,属于基础题.
    2、30
    【分析】
    先证明再证明再利用平行线的性质与对顶角的性质可得答案.
    【详解】
    解:如图,记交于点
    由题意得:







    故答案为:
    【点睛】
    本题考查的是平行线的判定与性质,掌握“两直线平行,同位角相等与同旁内角互补,两直线平行”是解本题的关键.
    3、120°
    【分析】
    要求∠2的度数,只需根据平行线的性质求得其对顶角的度数.
    【详解】
    解:∵a∥b,∠1=60°,
    ∴∠3=120°,
    ∴∠2=∠3=120°.
    故答案为:120°

    【点睛】
    考查了平行线的性质,本题应用的知识点为:两直线平行,同旁内角互补的性质及对顶角相等的性质.
    4、(1)×;(2)×;(3)×;(4)√;(5)×
    【分析】
    根据对顶角与邻补角的定义与性质分析判断即可求解.
    【详解】
    (1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;
    (2)如果两个角相等,那么这两个角不一定是对顶角,错误;
    (3)有一条公共边的两个角不一定是邻补角,错误;
    (4)如果两个角是邻补角,那么它们一定互补,正确;
    (5)有一条公共边和公共顶点,且互为补角的两个角不一定是邻补角,错误;
    故答案为:(1)×;(2)×;(3)×;(4)√;(5)×.
    【点睛】
    本题主要考查了对顶角的与邻补角的性质,是基础题,熟记概念与性质是解题的关键,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.
    5、34°
    【分析】
    根据角平分线的性质可求出的度数,然后由平行线的判定与性质即可得出的度数.
    【详解】
    解:平分,




    故答案为
    【点睛】
    本题主要考查了平行线的判定与性质、角平分线的性质,灵活应用平行线的判定与性质是解题的关键.
    三、解答题
    1、(1)AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;(2)同旁内角互补,两直线平行;(3)AB;CD;125°;两直线平行,同旁内角互补.
    【分析】
    (1)由题意直接依据内错角相等,两直线平行进行分析以及两直线平行,同旁内角互补即可;
    (2)由题意直接依据同旁内角互补,两直线平行进行分析即可;
    (3)由题意直接根据两直线平行,同旁内角互补进行分析即可得出结论.
    【详解】
    解:(1)∵∠1=∠2 (已知)
    ∴AB∥CD(内错角相等,两直线平行)
    ∴∠ABD+ ∠BDC =180°(两直线平行,同旁内角互补)
    故答案为:AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;
    (2)∵∠BAC =65°,∠ACD=115°,(已知)
    ∴∠BAC+∠ACD=180° (等式性质 )
    ∴AB∥CD (同旁内角互补,两直线平行)
    故答案为:同旁内角互补,两直线平行;
    (3)∵CD⊥AB于D,EF⊥AB于F ,∠BAC=55°,(已知)
    ∴∠ABD=∠CDF=90°(垂直的定义)
    ∴AB ∥CD(同位角相等,两直线平行)
    又∵∠BAC=55°,(已知)
    ∴∠ACD = 125°.(两直线平行,同旁内角互补)
    故答案为:AB;CD;125°;两直线平行,同旁内角互补.
    【点睛】
    本题考查平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.
    2、(1);(2);(3)的值为:或.
    【分析】
    (1)先求解 再利用角的和差关系可得答案;
    (2)分两种情况讨论,当落在的下方时,如图,当落在的上方时,如图,再结合已知条件可得答案;
    (3)分两种情况讨论,如图,当落在的内部时,如图,当落在的外部时,再利用角的和差倍分关系可得答案.
    【详解】
    解:(1) ∠BAD=18°,∠EAD=∠BAD,




    (2)当落在的下方时,如图,


    当落在的上方时,如图,




    (3)当落在的内部时,如图,

    ∠CAE:∠BAD=7:4,

    当落在的外部时,如图,
    ∠CAE:∠BAD=7:4,

    设则


    解得:

    综上:的值为:或.
    【点睛】
    本题考查的是角的和差倍分关系,周角的含义,邻补角的含义,三角形中的角度问题,一元一次方程的应用,根据题干信息画出符合题意的图形,再进行分类讨论是解本题的关键.
    3、见解析.
    【分析】
    先根据平行线的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据平行线的性质可得,根据角平分线的定义可得,最后根据平行线的性质即可得.
    【详解】
    解:∵(已知),
    ∴(两直线平行,同旁内角互补).
    ∵(已知),
    ∴.
    ∵(已知),
    ∴(垂直的定义).
    ∴.
    ∵(已知),
    ∴(两直线平行,内错角相等).
    ∵平分(已知),
    ∴(角平分线的定义).
    ∵(己知),
    ∴(两条直线平行,同旁内角互补).
    ∴.
    【点睛】
    本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.
    4、(1)见解析;(2)150°
    【分析】
    (1)根据画角平分线的方法,画出角平分线即可;
    (2)先求出的度数,然后由角平分线的定义,即可求出答案.
    【详解】
    解:(1)如图,OD即为平分线

    (2)解:∵,
    ∴,

    ∴;
    【点睛】
    本题考查了角平分线的定义,画角平分线,解题的关键是掌握角平分线的定义进行解题.
    5、 (1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5; (2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7;(3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4
    【分析】
    根据两条直线被第三条直线所截,所形成的角中,两角在两条直线的中间,第三条直线的两旁,可得内错角,两角在两直线的中间,第三条直线的同侧,可得同旁内角,两角在两条直线的同侧,第三条直线的同侧,可得同位角.
    【详解】
    解:(1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5.
    (2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7.
    (3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4.
    【点睛】
    此题主要考查了三线八角,关键是掌握同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形.
    6、平行,见解析
    【分析】
    先由角平分线的定义得到∠3=∠ADC,∠2=∠ABC,再由∠ABC=∠ADC,得到∠3=∠2,即可推出∠3=∠1,再由内错角相等,两直线平行即可证明.
    【详解】
    解:CD∥AB.理由如下:
    ∵BF、DE分别是∠ABC、∠ADC的角平分线,
    ∴∠3=∠ADC,∠2=∠ABC.
    ∵∠ABC=∠ADC,
    ∴∠3=∠2.
    又∵∠1=∠2,
    ∴∠3=∠1.
    ∴CD∥AB(内错角相等,两直线平行).
    【点睛】
    本题主要考查了角平分线的定义,平行线的判定,解题的关键在于能够熟练掌握角平分线的定义与平行线的判定条件.
    7、(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行;
    【分析】
    (1)根据两直线被第3条直线所截,确定∠2,∠3的位置为内错角,然后再判断直线平行即可;
    (2)根据两直线被第3条直线所截,确定∠2,∠5的位置为同位角,然后再判断直线平行即可;
    (3)根据两直线被第3条直线所截,确定∠2,∠1的位置为同旁内角,然后再判断直线平行即可;
    (4)根据两直线被第3条直线所截,确定∠5,∠3的位置为内错角,然后再判断直线平行即可.
    【详解】
    (1)如果∠2=∠3,那么EF∥DC.(内错角相等,两直线平行);
    (2)如果∠2=∠5,那么EF∥AB.(同位角相等,两直线平行);
    (3)如果∠2+∠1=180°,那么AD∥BC.(同旁内角互补,两直线平行);
    (4)如果∠5=∠3,那么AB∥CD.(内错角相等,两直线平行.
    故答案为:(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行.
    【点睛】
    本题考查平行线的判定,角的位置关系识别,掌握三线八角的两角位置关系,直线平行的判定定理是解题关键.
    8、(1)60,75;(2)秒;(3)3或12或21或30
    【分析】
    (1)根据题意利用互余和互补的定义可得:∠EOC与∠FOD的度数.
    (2)由题意先根据,得出∠EOF=150°,则射线OE'、OF'第一次重合时,其OE'运动的度数+OF'运动的度数=150,列式解出即可;
    (3)根据题意分两种情况在直线OE的左边和右边,进而根据其夹角列4个方程可得时间.
    【详解】
    解:(1)∵∠BOE=90°,
    ∴∠AOE=90°,
    ∵∠AOC=α=30°,
    ∴∠EOC=90°-30°=60°,
    ∠AOD=180°-30°=150°,
    ∵OF平分∠AOD,
    ∴∠FOD=∠AOD=×150°=75°;
    故答案为:60,75;
    (2)当,.
    设当射线与射线重合时至少需要t秒,
    可得,解得:;
    答:当射线与射线重合时至少需要秒;
    (3)设射线转动的时间为t秒,
    由题意得:或或或,
    解得:或12或21或30.
    答:射线转动的时间为3或12或21或30秒.
    【点睛】
    本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论.
    9、(1)见解析;(2)18.
    【分析】
    (1)直接利用网格结合平行线的判定方法得出答案;
    (2)利用四边形PMAN所在矩形减去周围三角形面积得出答案.
    【详解】
    解:(1)如图所示:点M,点N即为所求;
    (2)四边形PMAN的面积为:5×7﹣×3×3﹣×2×4﹣×2×4﹣×3×3=18.

    【点睛】
    本题考查网格与作图—作直线外一点作已知直线的平行线,网格图形面积等知识,是基础考点,掌握相关知识是解题关键.
    10、(1);(2)4;(3)作图见详解;点A到直线BC的距离为.
    【分析】
    (1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;
    (2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;
    (3)过点A作,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.
    【详解】
    解:(1)∵,
    ∴,
    ∵,,
    ∴,
    故答案为:;
    (2)∵,
    ∴点B到直线AC的距离为线段,
    故答案为:4;
    (3)如图所示:过点A作,点A到直线BC的距离为线段AD的长度,

    ∵,
    ∴为直角三角形,
    ∴SΔABC=12×AC×AB=12×BC×AD,
    即,
    解得:,
    ∴点A到直线BC的距离为.
    【点睛】
    题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.

    相关试卷

    数学第十三章 相交线 平行线综合与测试课后复习题:

    这是一份数学第十三章 相交线 平行线综合与测试课后复习题,共32页。试卷主要包含了如图所示,下列说法错误的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习,共27页。试卷主要包含了下列说法中,正确的是,如图,直线b等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题,共31页。试卷主要包含了下列命题中,为真命题的是,下列关于画图的语句正确的是.等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map