







初中数学冀教版七年级下册第八章 整式乘法8.5 乘法公式习题课件ppt
展开1.【2021·湖北十堰】下列计算正确的是( )A.a3·a3=2a3 B.(-2a)2=4a2C.(a+b)2=a2+b2 D.(a+2)(a-2)=a2-2
2.【河北保定唐县期末】计算(-a-b)2等于( )A.a2+b2 B.a2-b2C.a2+2ab+b2 D.a2-2ab+b2
3.【2019·河北石家庄新华区月考】计算a2-(b-1)2,结果正确的是( )A.a2-b2-2b+1 B.a2-b2-2b-1C.a2-b2+2b-1 D.a2-b2+2b+1
4.【2020·江西】计算:(x-1)2=_________.
5.【2019·河北石家庄行唐期末】设(2a+3b)2=(2a-3b)2+A,则A=( )A.6ab B.12abC.0 D.24ab
6.将图①中阴影部分拼成图②,根据两个图形中阴影部分的关系,可以验证下列哪个算式?( )A.(a-b)2=a2-2ab+b2B.(a+b)2=a2+2ab+b2C.(a-b)2=(a+b)2-4abD.(a+b)(a-b)=a2-b2
7.【中考·河北】将9.52变形正确的是( )A.9.52=92+0.52B.9.52=(10+0.5)(10-0.5)C.9.52=102-2×10×0.5+0.52D.9.52=92+9×0.5+0.52
8.若(x-n)2=x2+x+m,则m,n的值分别是( )
9.【河北保定莲池区期末】对于任意有理数a,b,现用“☆”定义一种运算:a☆b=a2-b2,根据这个定义,代数式(x+y)☆y可以化简为( )A.xy+y2 B.xy-y2C.x2+2xy D.x2
10.如图, 从边长为(a+1)cm的正方形纸片中剪去一个边长为(a-1)(a>1)cm的正方形,剩余部分沿虚线可剪拼成一个长方形(不重叠无缝隙),则该长方形的面积是( )A.2 cm2 B.2a cm2 C.4a cm2 D.(a2-1)cm2
【点拨】本题利用了面积法,长方形的面积等于大正方形的面积减去小正方形的面积,即(a+1)2-(a-1)2=4a(cm2).
11.【2020·河北唐山月考】已知:(x+y)2=17,(x-y)2=1,则x2+y2=________,xy=________.
【点拨】∵(x+y)2=17,(x-y)2=1,∴x2+y2+2xy=17,x2+y2-2xy=1.∴x2+y2=9,xy=4.
12.【2020·河北石家庄红星学校期中】先化简,再求值:(a+2b)(a-2b)+(a+2b)2-4ab,其中a=1,b= .
13.【易错:完全平方公式理解错误而致错】【河北邢台南和期末】计算(-2x+3y)(2x-3y)的结果为( )A.-4x2+12xy-9y2 B.4x2-9y2C.4x2-12xy+9y2 D.9y2-4x2
15.【2019·河北廊坊霸州期末】如图,有三种规格的卡片,其中边长为a的正方形卡片1张,边长为b的正方形卡片4张,长、宽分别为a,b的长方形卡片m张.若使用这些卡片刚好可以拼成一个边长为a+2b的正方形,则m的值为( )A.1 B.2 C.3 D.4
16.【2020·河北石家庄外国语教育集团期中】若(x+n)2-1=x2+6x+m,则m=________.
【点拨】(x+n)2-1=x2+2xn+n2-1=x2+6x+m.∴2n=6,n2-1=m,∴m=8.
17.计算:(1)(x-2)2-(x+3)(x-3); (2)(2x+3y)2-2(2x+3y)(2x-3y)+(2x-3y)2.
解:原式=x2-4x+4-(x2-9)=x2-4x+4-x2+9=-4x+13.
解:原式=4x2+12xy+9y2-2(4x2-9y2)+4x2-12xy+9y2=4x2+12xy+9y2-8x2+18y2+4x2-12xy+9y2=36y2.
18.【2020·江苏宿迁改编】已知a+b=3,a2+b2=5,求ab的值.
解:∵a+b=3,a2+b2=5,∴(a+b)2-(a2+b2)=2ab=32-5=4,∴ab=2.
19.已知m,n满足m+n=6,mn=-3.(1)求(m-2)(n-2)的值;(2)求m2+n2的值.
解:因为m+n=6,mn=-3,所以(m-2)(n-2)=mn-2m-2n+4=mn-2(m+n)+4=-3-2×6+4=-11.
解:m2+n2=(m+n)2-2mn=62-2×(-3)=36+6=42.
20.【2020·河北石家庄第四十一中学期中】(1)如图①是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图②),请你写出(a+b)2,(a-b)2,ab之间的等量关系是_________________________;
(a+b)2-(a-b)2=4ab.
(2)两个边长分别为a和b的正方形如图③放置,求出图③中阴影部分的面积S3;
(3)若a+b=10,ab=22,求S3的值.
21.阅读材料,解决后面的问题:若m2+2mn+2n2-6n+9=0,求 的值.解:因为m2+2mn+2n2-6n+9=0,所以(m+n)2+(n-3)2=0.所以n=3,m=-3.所以
(2)设两个连续奇数为2n+1,2n-1(其中n为正整数),写出它们的平方差,并说明结果是8的倍数;延伸:直接写出两个连续偶数的平方差是几的倍数.
(1)若x2+4x+4+y2-8y+16=0,求 的值;
(2)若x2+2y2-2xy+2y+1=0,求x+2y的值;
解:原等式即为x2-2xy+y2+y2+2y+1=0,所以(x-y)2+(y+1)2=0.所以y=-1,x=-1.所以x+2y=-1+2×(-1)=-3.
(3)试说明:不论x,y取什么值,多项式x2+y2-2x+2y+3的值总是正数;
解:x2+y2-2x+2y+3=x2-2x+1+y2+2y+1+1=(x-1)2+(y+1)2+1.因为(x-1)2≥0,(y+1)2≥0,所以(x-1)2+(y+1)2+1的最小值为1.所以不论x,y取什么值,多项式x2+y2-2x+2y+3的值总是正数.
初中数学11.3 公式法习题ppt课件: 这是一份初中数学11.3 公式法习题ppt课件,共21页。PPT课件主要包含了答案呈现,x4答案不唯一等内容,欢迎下载使用。
数学8.5 乘法公式习题课件ppt: 这是一份数学8.5 乘法公式习题课件ppt,共22页。PPT课件主要包含了完全平方公式,冀教版七年级下,第8章整式的乘法,或-10,答案呈现等内容,欢迎下载使用。
初中数学冀教版七年级下册8.5 乘法公式习题课件ppt: 这是一份初中数学冀教版七年级下册8.5 乘法公式习题课件ppt,共31页。PPT课件主要包含了完全平方公式,冀教版七年级下,第8章整式的乘法,目标四整式的化简,答案呈现等内容,欢迎下载使用。