终身会员
搜索
    上传资料 赚现金

    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形专项测试试题(含答案解析)

    立即下载
    加入资料篮
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形专项测试试题(含答案解析)第1页
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形专项测试试题(含答案解析)第2页
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形专项测试试题(含答案解析)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题

    展开

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题,共28页。
    沪教版七年级数学第二学期第十四章三角形专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、已知:如图,DE分别在ABAC上,若ABACADAE,∠A=60°,∠B=25°,则∠BDC的度数是(  )A.95° B.90° C.85° D.80°2、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是(    A.10 B.8 C.7 D.43、若等腰三角形的一个外角是70°,则它的底角的度数是(    A.110° B.70° C.35° D.55°4、一个三角形三个内角的度数分别是xyz.若,则这个三角形是(    A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.不存在5、如图,钝角中,为钝角,边上的高,的平分线,则之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是(    A. B.C. D.6、如图,△ ABC≌△CDA,∠BAC=80°,∠ABC=65°,则∠CAD的度数为(    A.35° B.65° C.55° D.40°7、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=EDBC=20,AB=8,则BE的长度为(    A.12 B.10 C.8 D.68、如图,已知,要使,添加的条件不正确的是(   A. B. C. D.9、如图,BD的角平分线,,交AB于点E.若,则的度数是(    A.10° B.20° C.30° D.50°10、如图,已知的外角,,那么的度数是(    A.30° B.40° C.50° D.60°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,上的定点,分别为上两个动点,当的值最小时,的度数为______.2、如图,点C是线段AB的中点,.请你只添加一个条件,使得(1)你添加的条件是______;(要求:不再添加辅助线,只需填一个答案即可)(2)依据所添条件,判定全等的理由是______.3、如图,ABCD相交于点O,请你补充一个条件,使得,你补充的条件是______.4、如图,在△ABC中,点DBC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.5、在平面直角坐标系中,点B(0,4),点Ax轴上一动点,连接AB.以AB为边作等腰RtABE,(BAE按逆时针方向排列,且∠BAE为直角),连接OE.当OE最小时,点E的纵坐标为______.三、解答题(10小题,每小题5分,共计50分)1、如图,点DE在△ABC的边BC上,ABACADAE,求证:BDCE2、已知:如图,∠ABC=∠DCB,∠1=∠2.求证ABDC3、如图,在中,的平分线,点在边上,且(Ⅰ)求证:(Ⅱ)若,求的大小.4、如图,的角平分线,于点(1)用尺规完成以下基本作图:过点于点,连接于点.(不写作法,保留作图痕迹)(2)在(1)中所作的图形中,求证:5、如图,为等边三角形,DBC中点,CE的外角的平分线.求证:6、如图,将△ABC绕点A逆时针旋转得到△ADE,点DBC上,已知∠B=70°,求∠CDE的大小.7、阅读填空,将三角尺(△MPN∠MPN=90°)放置在△ABC上(点P△ABC内),如图①所示,三角尺的两边PM、PN恰好经过点B和点C,我们来研究∠ABP∠ACP是否存在某种数量关系.(1)特例探索:∠A=50°,则∠PBC+∠PCB=       度,∠ABP+∠ACP=       度.(2)类比探索:∠ABP、∠ACP、∠A的关系是                      (3)变式探索:如图②所示,改变三角尺的位置,使点P△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是                      8、已知:如图,在△ABC中,AB=3,AC=5.(1)直接写出BC的取值范围是     (2)若点DBC边上的一点,∠BAC=85°,∠ADC=140°,∠BAD=∠B,求∠C9、已知:如图,,求证:10、已知,∠A=∠DBC平分∠ABD,求证:ACDC -参考答案-一、单选题1、C【分析】根据SAS证△ABE≌△ACD,推出∠C=∠B,求出∠C的度数,根据三角形的外角性质得出∠BDC=∠A+∠C,代入求出即可.【详解】解:在△ABE和△ACD中,∴△ABE≌△ACDSAS),∴∠C=∠B∵∠B=25°,∴∠C=25°,∵∠A=60°,∴∠BDC=∠A+∠C=85°,故选C.【点睛】本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.2、C【分析】根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.【详解】解:条线段的长分别是4,4,m,若它们能构成三角形,则,即为整数,则整数m的最大值是7故选C【点睛】本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.3、C【分析】先求出与这个外角相邻的内角的度数为,再根据三角形的内角和定理即可得.【详解】解:等腰三角形的一个外角是与这个外角相邻的内角的度数为这个等腰三角形的顶角的度数为,底角的度数为故选:C.【点睛】本题考查了等腰三角形、三角形的内角和定理等知识点,判断出等腰三角形的顶角的度数为是解题关键.4、C【分析】根据绝对值及平方的非负性可得,再由三角形内角和定理将两个式子代入求解可得,即可确定三角形的形状.【详解】解:解得:∴三角形为等腰直角三角形,故选:C.【点睛】题目主要考查绝对值及平方的非负性,三角形内角和定理,等腰三角形的判定等,理解题意,列出式子求解是解题关键.5、B【分析】根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.【详解】解:由三角形内角和知∠BAC=180°-∠2-∠1,AE为∠BAC的平分线,∴∠BAE=BAC=(180°-∠2-∠1).ADBC边上的高,∴∠ADC=90°=∠DAB+∠ABD又∵∠ABD=180°-∠2,∴∠DAB=90°-(180°-∠2)=∠2-90°,∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).故选:B【点睛】本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.6、A【分析】先根据三角形内角和定理求出∠ACB=35°,再根据全等三角形性质即可求出∠CAD=35°.【详解】解:∵∠BAC=80°,∠ABC=65°,∴∠ACB=180°-∠BAC-∠ABC=35°,∵△ABC≌△CDA∴∠CAD=∠ACB=35°.故选:A【点睛】本题考查了三角形的内角和定理,全等三角形的性质,熟知两个定理是解题关键.7、A【分析】利用角相等和边相等证明,利用全等三角形的性质以及边的关系,即可求出BE的长度.【详解】解:由题意可知:∠ABE=∠AED=∠ECD=90°,中, 故选:A.【点睛】本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.8、D【分析】已知条件ABAC,还有公共角∠A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可.【详解】解:A、添加BDCE可得ADAE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;D、添加BECD不能判定△ABE≌△ACD,故此选项符合题意;故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSSSASASAAASHL(直角三角形),掌握三角形全等的判定方法是解题关键.9、B【分析】由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.【详解】解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD∴∠ABD=∠BDC−∠A=50°−30°=20°,BD是△ABC的角平分线,∴∠DBC=∠ABD=20°,DEBC∴∠EDB=∠DBC=20°,故选:B.【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.10、B【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.二、填空题1、6°【分析】作点关于直线的对称点,连接,交于点,过点,交于点,根据,且当时最小,所以当的值最小时,当点与点重合,点与点重合时,此时等于,进而根据直角三角形的两锐角互余,以及角度的和差关系求得即可【详解】解:如图,作点关于直线的对称点,连接,交于点,过点,交于点,且当时最小,所以当的值最小时,当点与点重合,点与点重合时,此时等于,根据对称性可得的值最小时,的度数为故答案为:【点睛】本题考查了根据轴对称求最短线段和,垂线段最短,直角三角形的,根据题意作出图形是解题的关键.2、AD=CE(或∠D=∠E或∠ACD=∠B)(答案不唯一)    SAS    【分析】(1)由已知条件可得两个三角形有一组对应边相等,一组对应角相等,根据三角形全等的判定方法添加条件即可;(2)根据添加的条件,写出判断的理由即可.【详解】解:(1)添加的条件是:AD=CE(或∠D=∠E或∠ACD=∠B故答案为:AD=CE(或∠D=∠E或∠ACD=∠B(2)若添加:AD=CE∵点C是线段AB的中点,AC=BC (SAS)故答案为:SAS【点睛】本题主要考查了添加条件判断三角形全等,熟练掌握全等三角形的判断方法是解答本题的关键.3、(答案不唯一)【分析】中,已经有条件: 所以补充可以利用证明两个三角形全等.【详解】解:在中, 所以补充: 故答案为:【点睛】本题考查的是全等三角形的判定,掌握“利用边边边公理证明两个三角形全等”是解本题的关键.4、30°【分析】根据三角形的外角的性质,即可求解.【详解】解:∵∵∠ACD=75°,∠A=45°,故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.5、-2【分析】EEFx轴于F,由三垂直模型,得EFOAAFOB,设Aa,0),可求得Ea+4,a),点E在直线yx-4上,当OECD时,OE最小,据此求出坐标即可.【详解】解:如图,过EEFx轴于F∵∠AOB=∠EFA=∠BAE=90°,∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,∴∠ABO=∠EAFAB=AE∴△ABO≌△EAFEFOAAFOB=4,取点C(4,0),点D(0,-4),∴∠OCD=45°,CF=4- OFOA=4- OFCFOA EF∴∠ECF=45°,∴点E在直线CD上,当OECD时,OE最小,此时△EFO和△ECO为等腰Rt△,OFEF=2,此时点E的坐标为:(2,-2). 故答案为:-2【点睛】本题考查了全等三角形的判定与性质,解题关键是确定点E运动的轨迹,确定点E的位置.三、解答题1、见解析【分析】AAFBCF,根据等腰三角形的性质得出BF=CFDF=EF,即可求出答案.【详解】证明:如图,过AAFBCFAB=ACAD=AEBF=CFDF=EFBF-DF=CF-EFBD=CE【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.2、见解析【分析】由“ASA”可证△ABO≌△DCO,可得结论.【详解】证明:如图,记的交点为 ∵∠ABC=∠DCB,∠1=∠2,又∵∠OBC=∠ABC−∠1,∠OCB=∠DCB−∠2,∴∠OBC=∠OCBOBOC在△ABO和△DCO中,∴△ABO≌△DCOASA),ABDC【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.3、(Ⅰ)见解析;(Ⅱ)【分析】(Ⅰ)由CD的平分线得出,由得出从而得出,由平行线的判断即可得证;(Ⅱ)由三角形内角和求出,由角平分线得出,由三角形内角和求出即可得出答案.【详解】(Ⅰ)∵CD的平分线,(Ⅱ)∵【点睛】本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键4、(1)见解析;(2)见解析.【分析】(1)以点D为圆心,适当长为半径,作弧,交AC于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC的交点即为点F,连接于点(2)利用角平分线性质可得,由此证明,得到,继而证明,证得即可解题.【详解】解:(1)如图,点F、G即为所求作的点;(2)的角平分线,【点睛】本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.5、证明见解析.【分析】DDGACABG,由等边三角形的性质和平行线的性质得到∠BDG=∠BGD=60°,于是得到△BDG是等边三角形,再证明△AGD≌△DCE即可得到结论.【详解】证明:过DDGACABG∵△ABC是等边三角形,ABAC,∠B=∠ACB=∠BAC=60°,又∵DGAC∴∠BDG=∠BGD=60°,∴△BDG是等边三角形,∠AGD=180°−∠BGD=120°,DGBD∵点DBC的中点,BDCDDGCDEC是△ABC外角的平分线,∴∠ACE(180°−∠ACB)=60°,∴∠BCE=∠ACB+∠ACE=120°=∠AGDABAC,点DBC的中点,∴∠ADB=∠ADC=90°,又∵∠BDG=60°,∠ADE=60°,∴∠ADG=∠EDC=30°,在△AGD和△ECD中,∴△AGD≌△ECDASA).ADDE【点睛】本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.6、【分析】先由旋转的性质证明再利用等边对等角证明从而可得答案.【详解】解: 把△ABC绕点A逆时针旋转得到△ADE,∠B=70°, 【点睛】本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.7、(1)90,40 ;(2)∠ABP+∠ACP+∠A=90°;(3)∠A+∠ACP∠ABP=90°.【分析】(1)由三角形内角和为180°计算中的角的关系即可.(2)由(1)所得即可得出∠ABP、∠ACP、∠A的关系为∠ABP+∠ACP+∠A=90°.(3)由三角形外角的性质即可推出∠A+∠ACP∠ABP=90°.【详解】(1)在∵∠MPN=90°∠PBC+∠PCB=180°-∠MPN=180°-90°=90°∵∠A+∠ABC+∠ACB=180°又∵∠ABC=∠PBC+∠ABP,∠ACB=∠ACP+∠BCP∴∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°∠PBC+∠PCB=90°,∠A=50°∠ABP +∠ACP=180°-90°-50°=40°(2)由(1)问可知∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°又∵∠PBC+∠PCB=90°∴∠A+∠ABP +∠ACP=180°-(∠PBC+∠PCB)=180°-90°=90°(3)如图所示,设PNAB交于点H∵∠A+∠ACP=∠AHP又∵∠ABP+∠MPN =∠AHP∴∠A+∠ACP=∠ABP+∠MPN又∵∠MPN =90°∠A+∠ACP =90°+∠ABP∠A+∠ACP∠ABP=90°.【点睛】本题考查了三角形的性质以及三角尺的角度计算问题,三角板的角度分别为90°,45°,45°;90°,60°,30°两种直角三角尺,三角形内角和是180°,三角形的一个外角等于与它不相邻的两个内角的和.8、(1)2<BC<8;(2)25°【分析】(1)根据三角形三边关系解答即可;(2)根据三角形外角性质和三角形内角和解答即可.【详解】解:(1)∵AC-ABBCAC+ABAB=3,AC=5.∴2<BC<8,故答案为:2<BC<8(2)∵∠ADC是△ABD的外角∴∠ADC=∠B+∠BAD=140∵∠B=∠BAD∴∠B∵∠B+∠BAC+∠C=180∴∠C=180﹣∠B﹣∠BAC即∠C=180﹣70﹣85=25【点睛】本题考查了三角形第三边的取值范围,三角形内角和定理和三角形外角的性质,能根据三角形的外角的性质求出∠B的度数是解此题的关键.9、证明见解析【分析】,结合公共边 从而可得结论.【详解】证明:在中, 【点睛】本题考查的是全等三角形的判定,掌握“利用边边边公理证明三角形全等”是解本题的关键.10、见解析【分析】证明△BAC≌△BDC即可得出结论.【详解】解:∵BC平分∠ABD∴∠ABC=∠DBC在△BAC和△BDC∴△BAC≌△BDCACDC【点睛】本题考查角平分线的意义及全等三角形的判定与性质,解题关键是掌握角平分线的性质及全等三角形的判定与性质. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题,共35页。试卷主要包含了下列三角形与下图全等的三角形是,定理等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时练习,共35页。试卷主要包含了已知,下列三角形与下图全等的三角形是,定理等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步测试题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步测试题,共30页。试卷主要包含了下列四个命题是真命题的有等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map