初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后练习题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后练习题,共35页。试卷主要包含了如图,在中,AD,如图,点A等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,AD是的角平分线,,垂足为F.若,,则的度数为( )
A.35° B.40° C.45° D.50°
2、如图,ABC的面积为18,AD平分∠BAC,且AD⊥BD于点D,则ADC的面积是( )
A.8 B.10 C.9 D.16
3、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )
A.10 B.8 C.7 D.4
4、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为( )
A.40° B.45° C.50° D.60°
5、如图,在中,AD、AE分别是边BC上的中线与高,,CD的长为5,则的面积为( )
A.8 B.10 C.20 D.40
6、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )
A.6cm B.5cm C.3cm D.1cm
7、如图,点A、B、C、D在一条直线上,点E、F在AD两侧,,,添加下列条件不能判定的是( )
A. B. C. D.
8、下列各组线段中,能构成三角形的是( )
A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、6
9、如图,在和中,,,,,连接,交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为( )
A.1个 B.2个 C.3个 D.4个
10、等腰三角形的一个顶角是80°,则它的底角是( ).
A.40° B.50° C.60° D.70°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知,点,,,在射线ON上,点,,,在射线OM上,,,,均为等边三角形,若,则的边长为______.的边长为______.
2、如图,在中,,一条线段,P,Q两点分别在线段和的垂线上移动,若以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,则的长为_________.
3、如图,在等边△ABC中,E为AC边的中点,AD垂直平分BC,P是AD上的动点.若AD=6,则EP+CP的最小值为_______________.
4、如图,在△中,已知点分别为的中点,若△的面积为,则阴影部分的面积为 _________
5、如图,在边长为4,面积为的等边中,点、分别是、边的中点,点是边上的动点,求的最小值___.
三、解答题(10小题,每小题5分,共计50分)
1、在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边的边上,且,,交于点Q.求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:
(1)若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.
(2)若将题中的点M,N分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.
2、直线l经过点A,在直线l上方,.
(1)如图1,,过点B,C作直线l的垂线,垂足分别为D、E.求证:
(2)如图2,D,A,E三点在直线l上,若(为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明.
(3)如图3,过点B作直线l上的垂线,垂足为F,点D是BF延长线上的一个动点,连结AD,作,使得,连结DE,CE.直线l与CE交于点G.求证:G是CE的中点.
3、下面是“作一个角的平分线”的尺规作图过程.
已知:如图,钝角.
求作:射线OC,使.
作法:如图,
①在射线OA上任取一点D;
②以点О为圆心,OD长为半径作弧,交OB于点E;
③分别以点D,E为圆心,大于长为半径作弧,在内,两弧相交于点C;
④作射线OC.
则OC为所求作的射线.
完成下面的证明.
证明:连接CD,CE
由作图步骤②可知______.
由作图步骤③可知______.
∵,
∴.
∴(________)(填推理的依据).
4、一个零件形状如图所示,按规定应等于75°,和应分别是18°和22°,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.
5、如图,在中,,,点D是内一点,连接CD,过点C作且,连接AD,BE.求证:.
6、如图,△ABC是等边三角形,点D、E、F分别同时从A、B、C以同样的速度沿AB、BC、CA方向运动,当点D运动到点B时,三个点都停止运动.
(1)在运动过程中△DEF是什么形状的三角形,并说明理由;
(2)若运动到某一时刻时,BE=4,∠DEC=150°,求等边△ABC的周长;
7、如图,点A,B,C,D在一条直线上,,,.求证:.
8、如图,在等边△ABC中,点P是BC边上一点,∠BAP=(30°<<60°),作点B关于直线AP的对称点D,连接DC并延长交直线AP于点E,连接BE.
(1)依题意补全图形,并直接写出∠AEB的度数;
(2)用等式表示线段AE,BE,CE之间的数量关系,并证明.
分析:①涉及的知识要素:图形轴对称的性质;等边三角形的性质;全等三角形的判定与性质……
②通过截长补短,利用60°角构造等边三角形,进而构造出全等三角形,从而达到转移边的目的.
请根据上述分析过程,完成解答过程.
9、如图,在中,,,,BD是的角平分线,点E在AB边上,.求的周长.
10、如图,是的中线,分别过点、作及其延长线的垂线,垂足分别为、.
(1)求证:;
(2)若的面积为8,的面积为6,求的面积.
-参考答案-
一、单选题
1、B
【分析】
根据三角形的内角和求出∠ACB=90°,利用三角形全等,求出DC=DE,再利用外角求出答案.
【详解】
解:∵∠CAB=40°,∠B=50°,
∴∠ACB=180°−40°−50°=90°,
∵CE⊥AD,
∴∠AFC=∠AFE=90°,
∵AD是△ABC的角平分线,
∴∠CAD=∠EAD=×40°=20°,
又∵AF=AF,
∴△ACF≌△AEF(ASA)
∴AC=AE,
∵AD=AD,∠CAD=∠EAD,
∴△ACD≌△AED (SAS),
∴DC=DE,
∴∠DCE=∠DEC,
∵∠ACE=90°−20°=70°,
∴∠DCE=∠DEC=∠ACB−∠ACE=90°−70°=20°,
∴∠BDE=∠DCE+∠DEC=20°+20°=40°,
故选:B.
【点睛】
考查角平分线、全等三角形的判定和性质、三角形的内角和等知识,根据三角形的内角和求出相应各个角的度数是解决问题的关键.
2、C
【分析】
延长BD交AC于点E,根据角平分线及垂直的性质可得:,,依据全等三角形的判定定理及性质可得:,,再根据三角形的面积公式可得:SΔABD=SΔADE,SΔBDC=SΔCDE,得出SΔADC=12SΔABC,求解即可.
【详解】
解:如图,延长BD交AC于点E,
∵AD平分,,
∴,,
在和中,
,
∴,
∴,
∴SΔABD=SΔADE,SΔBDC=SΔCDE,
∴SΔADC=12SΔABC=12×18=9,
故选:C.
【点睛】
题目主要考查全等三角形的判定和性质,角平分线的定义等,熟练掌握基础知识,进行逻辑推理是解题关键.
3、C
【分析】
根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.
【详解】
解:条线段的长分别是4,4,m,若它们能构成三角形,则
,即
又为整数,则整数m的最大值是7
故选C
【点睛】
本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.
4、C
【分析】
根据三角形内角和定理确定,然后利用平行线的性质求解即可.
【详解】
解:∵,,
∴,
∵,
∴,
故选:C.
【点睛】
题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.
5、C
【分析】
根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.
【详解】
解:∵AD是边BC上的中线,CD的长为5,
∴CB=2CD=10,
的面积为,
故选:C.
【点睛】
本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.
6、C
【分析】
根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
【详解】
解:设第三边长为xcm,根据三角形的三边关系可得:
3-2<x<3+2,
解得:1<x<5,
只有C选项在范围内.
故选:C.
【点睛】
本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.
7、A
【分析】
根据题意,可得,结合选项根据三角形全等的性质与判定逐项分析即可.
【详解】
解:
A. ,,不能根据SSA证明三角形全等,故该选项符合题意;
B.
,
故能判定,不符合题意;
C. ,,
,故能判定,不符合题意;
D.
,故能判定,不符合题意;
故选A
【点睛】
本题考查了平行线的性质,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.
8、C
【分析】
根据三角形的三边关系定理逐项判断即可得.
【详解】
解:三角形的三边关系定理:任意两边之和大于第三边.
A、,不能构成三角形,此项不符题意;
B、,不能构成三角形,此项不符题意;
C、,能构成三角形,此项符合题意;
D、,不能构成三角形,此项不符题意;
故选:C.
【点睛】
本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.
9、C
【分析】
由全等三角形的判定及性质对每个结论推理论证即可.
【详解】
∵
∴
∴
又∵,
∴
∴
故①正确
∵
∴
由三角形外角的性质有
则
故②正确
作于,于,如图所示:
则°,
在和中,,
∴,
∴,
在和中,
∴,
∴
∴平分
故④正确
假设平分
则
∵
∴
即
由④知
又∵为对顶角
∴
∴
∴
∴在和中,
∴
即AB=AC
又∵
故假设不符,故不平分
故③错误.
综上所述①②④正确,共有3个正确.
故选:C.
【点睛】
本题考查了全等三角形的判定及性质,灵活的选择全等三角形的判定的方法是解题的关键,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.
10、B
【分析】
依据三角形的内角和是180°以及等腰三角形的性质即可解答.
【详解】
解:(180°-80°)÷2
=100°÷2
=50°;
答:底角为50°.
故选:B.
【点睛】
本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点.
二、填空题
1、2a 2n﹣1a
【分析】
利用等边三角形的性质得到∠A1OB1=∠A1B1O=30°,OA1=A1B1=A2B1=a,利用同样的方法得到A2O=A2B2=2a=21a,A3B3=A3O=2A2O=4=22a,利用此规律即可得到AnBn=2n﹣1a.
【详解】
解:∵△A1B1A2为等边三角形,∠MON=30°,
∴∠A1OB1=∠A1B1O=30°,OA1=A1B1=A2B1=a,
同理:A2O=A2B2=2=21a,
A3B3=A3O=2A2O=4a=22a,
…….
以此类推可得△AnBnAn+1的边长为AnBn=2n﹣1a.
故答案为:2a;2n﹣1a.
【点睛】
本题考查规律型:图形的变化类,等边三角形的性质,解题关键是掌握三角形边长的变化规律.
2、6cm或12cm
【分析】
先根据题意得到∠BCA=∠PAQ=90°,则以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,由此利用全等三角形的性质求解即可.
【详解】
解:∵AX是AC的垂线,
∴∠BCA=∠PAQ=90°,
∴以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,
当△ACB≌△QAP,
∴;
当△ACB≌△PAQ,
∴,
故答案为:6cm或12cm.
【点睛】
本题主要考查了全等三角形的性质,熟知全等三角形的性质是解题的关键.
3、6
【分析】
要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解.
【详解】
解:作点E关于AD的对称点F,连接CF,
∵△ABC是等边三角形,AD是BC边上的中垂线,
∴点E关于AD的对应点为点F,
∴CF就是EP+CP的最小值.
∵△ABC是等边三角形,E是AC边的中点,
∴F是AB的中点,
∴CF=AD=6,
即EP+CP的最小值为6,
故答案为6.
【点睛】
本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键.
4、1
【分析】
根据三角形的中线把三角形分成两个面积相等的三角形解答.
【详解】
解:∵点E是AD的中点,
∴S△ABE=S△ABD,S△ACE=S△ADC,
∴S△ABE+S△ACE=S△ABC=×4=2cm2,
∴S△BCE=S△ABC=×4=2cm2,
∵点F是CE的中点,
∴S△BEF=S△BCE=×2=1cm2.
故答案为:1.
【点睛】
本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.
5、
【分析】
连接,交于点,连接,则的最小值为,再由已知求出的长即可.
【详解】
解:连接,交于点,连接,
是等边三角形,是边中点,
点与点关于对称,
,
,
的最小值为,
是的中点,
,
,的面积为,
,
的最小值为,
故答案为:.
【点睛】
本题考查了等边三角形的性质,将军饮马河原理,熟练掌握等边三角形的性质,灵活运用将军饮马河原理是解题的关键.
三、解答题
1、
(1)仍是真命题,证明见解析
(2)仍能得到,作图和证明见解析
【分析】
(1)由角边角得出和全等,对应边相等即可.
(2)由(1)问可知BM=CN,故可由边角边得出和全等,对应角相等,即可得出.
(1)
∵
∴
∵
∴
在和中有
∴
∴
故结论仍为真命题.
(2)
∵BM=CN
∴CM=AN
∵AB=AC,,
在和中有
∴
∴
∴
故仍能得到,如图所示
【点睛】
本题考查了全等三角形的判定和性质,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.
2、(1)见解析;(2)猜想:,见解析;(3)见解析
【分析】
(1)先证明和,再根据证明即可;
(2)根据AAS证明得,,进一步可得出结论;
(3)分别过点C、E作,,同(1)可证,,得出CM=EN,证明得,从而可得结论.
【详解】
解:(1)证明:∵,,
∴,
∴
∵,
∴
∴,
在与中
,
∴
(2)猜想:,
∵
∴,
∴,
在与中
∴,
∴,,
∴
(3)分别过点C、E作,,
同(1)可证,,
∴,
∴,
∵,,
∴
在与中
∴,
∴,
∴G为CE的中点.
【点睛】
本题考查了全等三角形的判定与性质、垂线的定义、角的互余关系,证得△ABD≌△CAE是解决问题的关键.
3、OE; CE;全等三角形的对应角相等
【分析】
根据圆的半径相等可得OD=OE,CD=CE,再利用SSS可证明,从而根据全等三角形的性质可得结论.
【详解】
证明:连接CD,CE
由作图步骤②可知___OE___.
由作图步骤③可知__CE___.
∵,
∴.
∴(__全等三角形对应角相等__)
故答案为:OE; CE;全等三角形的对应角相等
【点睛】
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定和性质.
4、不合格,理由见解析
【分析】
延长BD与AC相交于点E.利用三角形的外角性质,可得,,即可求解.
【详解】
解:如图,延长BD与AC相交于点E.
∵是的一个外角,,,
∴,
同理可得
∵李师傅量得,不是115°,
∴这个零件不合格.
【点睛】
本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
5、证明见解析.
【分析】
先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证.
【详解】
证明:,
,
,
,
,
在和中,,
,
.
【点睛】
本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.
6、(1)△DEF是等边三角形,理由见解析(2)等边△ABC的周长为
【分析】
(1)利用△DEF是等边三角形的性质以及三点的运动情况,求证和,进而证明,最后即可说明△DEF是等边三角形.
(2)利用题(1)的条件即∠DEC=150°,得出是含角的直角三角形,求出,最后求解出等边△ABC的长,最后即可求出等边△ABC的周长.
【详解】
(1)解:△DEF是等边三角形,
证明:由点D、E、F的运动情况可知:,
△ABC是等边三角形,
,,
,
,
在与中,
,
,
同理可证,进而有,
,
故△DEF是等边三角形.
(2)解:由(1)可知△DEF是等边三角形,且,
,,,
,
,
在中,,
,
,
,
等边△ABC的周长为.
【点睛】
本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含角直角三角形的性质,求出对应边长,是解决该题的关键.
7、见解析
【分析】
根据平行线的性质得出,运用“角角边”证明△AEB≌△CFD即可.
【详解】
证明:∵,
∴,
在△AEB和△CFD中,
∴△AEB≌△CFD,
∴.
【点睛】
本题考查了全等三角形的判定与性质,解题关键是熟练运用全等三角形的判定定理进行证明.
8、(1)图见解析,∠AEB=60°;(2)AE=BE+CE,证明见解析
【分析】
(1)依题意补全图形,如图所示:然后连接AD,先求出,然后根据轴对称的性质得到,AD=AB=AC,∠AEC=∠AEB,求出,即可求出,再由进行求解即可;
(2)如图,在AE上截取EG=BE,连接BG.先证明△BGE是等边三角形,得到BG=BE=EG,∠GBE=60°. 再证明∠ABG=∠CBE,即可证明△ABG≌△CBE得到AG=CE,则AE=EG+AG=BE+CE.
【详解】
解:(1)依题意补全图形,如图所示:连接AD,
∵△ABC是等边三角形,
∴∠BAC=60°,AB=AC,
∵,
∴,
∵B、D关于AP对称,
∴,AD=AB=AC,∠AEC=∠AEB,
∴,
∴,
∴,
∴
∴∠AEB=60°.
(2)AE=BE+CE.
证明:如图,在AE上截取EG=BE,连接BG.
∵∠AEB=60°,
∴△BGE是等边三角形,
∴BG=BE=EG,∠GBE=60°.
∵△ABC是等边三角形,
∴AB=BC,∠ABC=60°,
∴∠ABG+∠GBC=∠GBC+∠CBE=60°,
∴∠ABG=∠CBE.
在△ABG和△CBE中,
∴△ABG≌△CBE(SAS),
∴AG=CE,
∴AE=EG+AG=BE+CE.
【点睛】
本题主要考查了全等三角形的性质,等边三角形的性质与判定,轴对称的性质,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质等等,熟知相关知识是解题的关键
9、
【分析】
由题意结合角平分线性质和全等三角形判定得出,进而依据的周长进行求解即可.
【详解】
解:∵,,,
∴,
∵BD是的角平分线,
∴,
在和中,
,
∴,
∴,
∵,
∴的周长.
【点睛】
本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.
10、
(1)见解析
(2)的面积为20.
【分析】
(1)根据已知条件得到、,然后利用全等三角形的判定,进行证明即可.
(2)分别根据和的面积,用CF表示AF、DF,通过,得到,,用CF表示出AE的长,最后利用面积公式求解即可.
(1)
(1)解:由题意可知:
是的中线
在与中
.
(2)
解:的面积为8,的面积为6.
,即
,即
由(1)可知:
,
.
【点睛】
本题主要是考查了全等三角形的判定和性质,熟练根据条件证明三角形全等,利用其性质,证明对应边相等,这是解决本题的关键.
相关试卷
这是一份初中沪教版 (五四制)第十四章 三角形综合与测试练习题,共35页。试卷主要包含了如图,在中,AD,如图,点D等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时练习,共35页。试卷主要包含了已知,下列三角形与下图全等的三角形是,定理等内容,欢迎下载使用。
这是一份沪教版 (五四制)第十四章 三角形综合与测试课后测评,共34页。试卷主要包含了定理等内容,欢迎下载使用。