数学七年级下册第十四章 三角形综合与测试复习练习题
展开沪教版七年级数学第二学期第十四章三角形章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.其中正确的有( )A.1个 B.2个 C.3个 D.4个2、如图点在同一条直线上,都是等边三角形,相交于点O,且分别与交于点,连接,有如下结论:①;②;③为等边三角形;④.其中正确的结论个数是( )A.1个 B.2个 C.3个 D.4个3、如图,在中,AD是角平分线,且,若,则的度数是( )A.45° B.50° C.52° D.58°4、如图,AD是的角平分线,,垂足为F.若,,则的度数为( )A.35° B.40° C.45° D.50°5、如图,点F,C在BE上,AC=DF,BF=EC,AB=DE,AC与DF相交于点G,则与2∠DFE相等的是( )A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B6、满足下列条件的两个三角形不一定全等的是( )A.周长相等的两个三角形 B.有一腰和底边对应相等的两个等腰三角形C.三边都对应相等的两个三角形 D.两条直角边对应相等的两个直角三角形7、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于( )A.65° B.80° C.115° D.50°8、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )A.SSS B.SAS C.ASA D.AAS9、下列长度的三条线段能组成三角形的是( )A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,710、如图,,于点,与交于点,若,则等于( )A.20° B.50° C.70° D.110°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,,点G分别为AD与CF的中点,若,则AC=______.2、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.3、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“,”.现仅存下列三个条件:①;②;③.为了甲同学画出形状和大小都确定的,乙同学可以选择的条件有: ______.(填写序号,写出所有正确答案)4、已知△ABC是等腰三角形,若∠A=70°,则∠B=_____.5、如图,在中,,,E为BC延长线上一点,与的平分线相交于点D,则∠D的度数为______.三、解答题(10小题,每小题5分,共计50分)1、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.(1)如图1,点D在线段BC上.①根据题意补全图1;②∠AEF = (用含有的代数式表示),∠AMF= °;③用等式表示线段MA,ME,MF之间的数量关系,并证明.(2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.2、已知:在△ABC中,AD平分∠BAC,AE=AC.求证:AD∥CE.3、如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,∠BAE=∠CAD,AB=AE,AD=AC.(1)求证:∠DEC=∠BAE;(2)如图2,当∠BAE=∠CAD=30°,AD⊥AB时,延长DE、AB交于点G,请直接写出图中除△ABE、△ADC以外的等腰三角形.4、如图,点在上,点在上,,∠=∠.求证:.5、如图,已知△ABC≌△DEB,点E在AB上,AC与BD交于点F,AB=6,BC=3,∠C=55°,∠D=25°.(1)求AE的长度;(2)求∠AED的度数.6、如图,在中,,,,BD是的角平分线,点E在AB边上,.求的周长.7、已知:如图,∠ABC=∠DCB,∠1=∠2.求证AB=DC.8、如图,点D在AC上,BC,DE交于点F,,,.(1)求证:;(2)若,求∠CDE的度数.9、如图,在中,AD平分,于点E.求证:.10、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.-参考答案-一、单选题1、C【分析】根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答.【详解】解:∵BF是∠AB的角平分线,∴∠DBF=∠CBF,∵DE∥BC,∴∠DFB=∠CBF,∴∠DBF=∠DFB,∴BD=DF,∴△BDF是等腰三角形;故①正确;同理,EF=CE,∴DE=DF+EF=BD+CE,故②正确;∵∠A=50°,∴∠ABC+∠ACB=130°,∵BF平分∠ABC,CF平分∠ACB,∴,∴∠FBC+∠FCB=(∠ABC+∠ACB)=65°,∴∠BFC=180°﹣65°=115°,故③正确;当△ABC为等腰三角形时,DF=EF,但△ABC不一定是等腰三角形,∴DF不一定等于EF,故④错误.故选:C.【点睛】本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键.2、D【分析】由SAS即可证明,则①正确;有∠CAE=∠CDB,然后证明△ACM≌△DCN,则②正确;由CM=CN,∠MCN=60°,即可得到为等边三角形,则③正确;由AD∥CE,则∠DAO=∠NEO=∠CBN,由外角的性质,即可得到答案.【详解】解:∵△DAC和△EBC均是等边三角形,∴AC=CD,BC=CE,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD,∠MCN=180°-∠ACD-∠BCE=60°,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS),则①正确;∴AE=BD,∠CAE=∠CDB,在ACM和△DCN中,,∴△ACM≌△DCN(ASA),∴CM=CN,;则②正确;∵∠MCN=60°,∴为等边三角形;则③正确;∵∠DAC=∠ECB=60°,∴AD∥CE,∴∠DAO=∠NEO=∠CBN,∴;则④正确;∴正确的结论由4个;故选D.【点睛】本题考查了等边三角形的性质与判定,全等三角形的判定与性质,平行线的性质与判定,综合性较强,但难度不是很大,准确识图找出全等三角形是解题的关键.3、A【分析】根据角平分线性质求出∠DCA,再根据等腰三角形的性质和三角形的内角和定理求解∠C和∠B即可.【详解】解:∵AD是角平分线,,∴∠DCA==30°,∵AD=AC,∴∠C=(180°-∠DCA)÷2=75°,∴∠B=180°-∠BAC-∠C=180°-60°-75°=45°,故选:A.【点睛】本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键.4、B【分析】根据三角形的内角和求出∠ACB=90°,利用三角形全等,求出DC=DE,再利用外角求出答案.【详解】解:∵∠CAB=40°,∠B=50°,∴∠ACB=180°−40°−50°=90°,∵CE⊥AD,∴∠AFC=∠AFE=90°,∵AD是△ABC的角平分线,∴∠CAD=∠EAD=×40°=20°,又∵AF=AF,∴△ACF≌△AEF(ASA)∴AC=AE,∵AD=AD,∠CAD=∠EAD,∴△ACD≌△AED (SAS),∴DC=DE,∴∠DCE=∠DEC,∵∠ACE=90°−20°=70°,∴∠DCE=∠DEC=∠ACB−∠ACE=90°−70°=20°,∴∠BDE=∠DCE+∠DEC=20°+20°=40°,故选:B.【点睛】考查角平分线、全等三角形的判定和性质、三角形的内角和等知识,根据三角形的内角和求出相应各个角的度数是解决问题的关键.5、C【详解】由题意根据等式的性质得出BC=EF,进而利用SSS证明△ABC与△DEF全等,利用全等三角形的性质得出∠ACB=∠DFE,最后利用三角形内角和进行分析解答.【分析】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE,∴2∠DFE=180°﹣∠FGC,故选:C.【点睛】本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法).6、A【分析】根据全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS,SAS对各选项进行一一判断即可.【详解】解:A、周长相等的两个三角形不一定全等,符合题意; B、有一腰和底边对应相等的两个等腰三角形根据三边对应相等判定定理可判定全等,不符合题意;C、三边都对应相等的两个三角形根据三边对应相等判定定理可判定全等,不符合题意;D、两条直角边对应相等的两个直角三角形根据SAS判定定理可判定全等,不符合题意.故选:A.【点睛】此题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形的判定方法.判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形).7、C【分析】根据题意画出图形,求出∠ABC+∠ACB =130°,根据角平分线的定义得到∠CBD=∠ABC,∠ECB=∠ACB,再根据三角形内角和定理和角的代换即可求解.【详解】解:如图,∵∠A=50°,∴∠ABC+∠ACB=180°-∠A=130°,∵BD、CE分别是∠ABC、∠ACB的平分线,∴∠CBD=∠ABC,∠ECB=∠ACB,∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- (∠ABC+∠ACB)=180°- ×130°=115°.故选:C【点睛】本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.8、A【分析】根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.【详解】解:三根木条即为三角形的三边长,即为利用确定三角形,故选:A.【点睛】题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.9、C【分析】根据三角形的三边关系,逐项判断即可求解.【详解】解:A、因为 ,所以不能组成三角形,故本选项不符合题意;B、因为 ,所以不能组成三角形,故本选项不符合题意;C、因为 ,所以能组成三角形,故本选项符合题意;D、因为 ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.10、C【分析】由与,即可求得的度数,又由,根据两直线平行,同位角相等,即可求得的度数.【详解】解:∵,∴,∵,∴,∵,∴.故选:C.【点睛】题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.二、填空题1、4【分析】根据SAS证明,由全等三角形的性质得,,由,得,推出,都是等腰三角形,故得,设,则,,,列出等量关系式解出,即可得出.【详解】∵点G分别为AD与CF的中点,∴,,,∴,∴,,∵,,∴,∴,都是等腰三角形,∴,设,则,,,∴,解得:,∴.故答案为:4.【点睛】本题考查全等三角形的判定与性质,等腰三角形的判定与性质,根据题意找出关系式是解题的关键.2、30°【分析】根据三角形的外角的性质,即可求解.【详解】解:∵ ,∴ ,∵∠ACD=75°,∠A=45°,∴ .故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.3、②【分析】根据两边及其夹角对应相等的两个三角形全等,即可求解.【详解】解:①若选,是边边角,不能得到形状和大小都确定的;②若选,是边角边,能得到形状和大小都确定的;③若选,是边边角,不能得到形状和大小都确定的;所以乙同学可以选择的条件有②.故答案为:②【点睛】本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.4、或或【分析】分①是顶角,是底角,②是底角,是底角,③是底角,是顶角三种情况,再根据等腰三角形的定义、三角形的内角和定理即可得.【详解】解:由题意,分以下三种情况:①当是顶角,是底角时,则;②当是底角,是底角时,则;③当是底角,是顶角时,则;综上,的度数为或或,故答案为:或或.【点睛】本题考查了等腰三角形、三角形的内角和定理,正确分三种情况讨论是解题关键.5、20°度【分析】根据角平分线的性质得到,再利用三角形外角的性质计算.【详解】解:∵与的平分线相交于点D,∴,∵∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,∴∠D=∠DCE-∠DBC=,故答案为:20°.【点睛】此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.三、解答题1、(1)①见解析; ②,;③MF=MA+ME,证明见解析;(2)【分析】(1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF; ③在FE上截取GF=ME,连接AG,证明△AFG ≌△AEM且△AGM为等边三角形后即可证得MF=MA+ME;(2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.【详解】解:(1)①补全图形如下图: ②∵∠CAE=∠DAC=,∴∠BAE=30°+∴∠FAE=2×(30°+)∴∠AEF==60°-;∵∠AMF=∠CAE+∠AEF=+60°-=60°,故答案是:60°-,60°; ③MF=MA+ME. 证明:在FE上截取GF=ME,连接AG .∵点D关于直线AC的对称点为E,∴△ADC ≌△AEC.∴∠CAE =∠CAD =.∵∠BAC=30°, ∴∠EAN=30°+.又∵点E关于直线AB的对称点为F,∴AB垂直平分EF.∴AF=AE,∠FAN=∠EAN =30°+,∴∠F=∠AEF=.∴∠AMG =.∵AF=AE,∠F=∠AEF, GF=ME,∴△AFG ≌△AEM.∴AG =AM.又∵∠AMG=,∴△AGM为等边三角形.∴MA=MG.∴MF=MG+GF=MA+ME. (2),理由如下:如图1所示,∵点E与点F关于直线AB对称,∴∠ANM=90°,NE=NF,又∵∠NAM=30°,∴AM=2MN,∴AM=2NE+2EM =MF+ME,∴MF=AM-ME;如图2所示,∵点E与点F关于直线AB对称,∴∠ANM=90°,NE=NF,∵∠NAM=30°,∴AM=2NM,∴AM=2MF+2NF=2MF+NE+NF=ME+MF,∴MF=MA-ME;综上所述:MF=MA-ME.【点睛】本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.2、见解析.【分析】先根据角平分线的定义得到∠BAD=∠BAC,再根据等腰三角形的性质和三角形外角定理得到∠E=∠BAC,从而得到∠BAD=∠E,即可证明AD∥CE.【详解】解:∵AD平分∠BAC,∴∠BAD=∠BAC,∵AE=AC,∴∠E=∠ACE,∵∠E+∠ACE=∠BAC,∴∠E=∠BAC,∴∠BAD=∠E,∴AD∥CE.【点睛】本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键.3、(1)见解析;(2)△AEF、△ADG、△DCF、△ECD【分析】(1)根据已知条件得到∠BAE=∠CAD,根据全等三角形的性质得到∠AED=∠ABC,根据等腰三角形的性质得到∠ABC=∠AEB,于是得到结论;(2)根据等腰三角形的判定定理即可得到结论.【详解】证明:(1)如图1,∵∠BAE=∠CAD, ∴∠BAE+∠CAE=∠CAD+∠CAE,即∠BAC=∠EAD,在△AED与△ABC中,∴△AED≌△ABC,∴∠AED=∠ABC,∵∠BAE+∠ABC+∠AEB=180°,∠CED+∠AED+∠AEB=180°,∵AB=AE,∴∠ABC=∠AEB,∴∠BAE+2∠AEB=180°,∠CED+2∠AEB=180°,∴∠DEC=∠BAE;(2)解:如图2, ①∵∠BAE=∠CAD=30°,∴∠ABC=∠AEB=∠ACD=∠ADC=75°,由(1)得:∠AED=∠ABC=75°,∠DEC=∠BAE=30°,∵AD⊥AB,∴∠BAD=90°,∴∠CAE=30°,∴∠AFE=180°−30°−75°=75°,∴∠AEF=∠AFE, ∴△AEF是等腰三角形, ②∵∠BEG=∠DEC=30°,∠ABC=75°,∴∠G=45°,在Rt△AGD中,∠ADG=45°,∴△ADG是等腰直角三角形, ③∠CDF=75°−45°=30°,∴∠DCF=∠DFC=75°,∴△DCF是等腰直角三角形;④∵∠CED=∠EDC=30°,∴△ECD是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键.4、见解析【分析】根据已知条件和公共角,直接根据角边角证明,进而即可证明【详解】在与中, ∴. ∴.【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.5、(1);(2).【分析】(1)先根据全等三角形的性质可得,再根据线段的和差即可得;(2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得.【详解】解:(1)∵,∴,∵,∴;(2)∵,∴,∵,∴.【点睛】本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.6、【分析】由题意结合角平分线性质和全等三角形判定得出,进而依据的周长进行求解即可.【详解】解:∵,,,∴,∵BD是的角平分线,∴,在和中,,∴,∴,∵,∴的周长.【点睛】本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.7、见解析【分析】由“ASA”可证△ABO≌△DCO,可得结论.【详解】证明:如图,记的交点为 ∵∠ABC=∠DCB,∠1=∠2,又∵∠OBC=∠ABC−∠1,∠OCB=∠DCB−∠2,∴∠OBC=∠OCB,∴OB=OC,在△ABO和△DCO中,,∴△ABO≌△DCO(ASA),∴AB=DC.【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.8、(1)证明见解析;(2)∠CDE=20°.【分析】(1)由“SAS”可证△ABC≌△DBE;(2)由全等三角形的性质可得∠C=∠E,由三角形的外角性质可求解.(1)证明:∵∠ABD=∠CBE,∴∠ABD+∠DBC=∠CBE+∠DBC,即:∠ABC=∠DBE,在△ABC和△DBE中,,∴△ABC≌△DBE(SAS);(2)解:由(1)可知:△ABC≌△DBE,∴∠C=∠E,∵∠DFB=∠C+∠CDE,∠DFB=∠E+∠CBE,∴∠CDE=∠CBE,∵∠ABD=∠CBE=20°,∴∠CDE=20°.【点睛】本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键.9、证明见解析.【分析】延长CE交AB于F,求出∠AEC=∠AEF,∠FAE=∠CAE,根据ASA证△FAE≌△CAE,推出∠ACE=∠AFC,根据三角形外角性质得出∠AFC=∠B+∠ECD,代入即可.【详解】证明:延长CE交AB于F,∵CE⊥AD,∴∠AEC=∠AEF,∵AD平分∠BAC,∴∠FAE=∠CAE,在△FAE和△CAE中,∵ ,∴△FAE≌△CAE(ASA),∴∠ACE=∠AFC,∵∠AFC=∠B+∠ECD,∴∠ACE=∠B+∠ECD.【点睛】本题考查了全等三角形的性质和判定,三角形的外角性质等知识点,关键是作辅助线后求出∠AFC=∠ACE.10、∠AFB=40°.【分析】由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.【详解】解:∵AD⊥BE,∴∠ADC=90°,∵∠DAC=10°,∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,∵AE是∠MAC的平分线,BF平分∠ABC,∴,又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,∴∠AFB=∠MAE﹣∠ABF=.【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.
初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习: 这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习,共34页。试卷主要包含了如图等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题,共27页。试卷主要包含了下列四个命题是真命题的有,三角形的外角和是等内容,欢迎下载使用。
初中沪教版 (五四制)第十四章 三角形综合与测试一课一练: 这是一份初中沪教版 (五四制)第十四章 三角形综合与测试一课一练,共33页。试卷主要包含了三角形的外角和是等内容,欢迎下载使用。