数学七年级下册第十四章 三角形综合与测试课时作业
展开沪教版七年级数学第二学期第十四章三角形专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于( )
A.180° B.210° C.360° D.270°
2、如图,等腰△ABC中,AB=AC,点D是BC边中点,则下列结论不正确的是( )
A.ÐB=ÐC B.AD⊥BC C.ÐBAD=ÐCAD D.AB=2BC
3、如图,已知为的外角,,,那么的度数是( )
A.30° B.40° C.50° D.60°
4、尺规作图:作角等于已知角.示意图如图所示,则说明的依据是( )
A.SSS B.SAS C.ASA D.AAS
5、如果三角形一边上的中线等于这条边的一半,那么这个三角形一定是( ).
A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
6、三根小木棒摆成一个三角形,其中两根木棒的长度分别是和,那么第三根小木棒的长度不可能是( )
A. B. C. D.
7、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )
A.SSS B.SAS C.ASA D.AAS
8、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则( ).
A.45° B.60° C.35° D.40°
9、如图点在同一条直线上,都是等边三角形,相交于点O,且分别与交于点,连接,有如下结论:①;②;③为等边三角形;④.其中正确的结论个数是( )
A.1个 B.2个 C.3个 D.4个
10、三个等边三角形的摆放位置如图所示,若,则的度数为
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在边长为4,面积为的等边中,点、分别是、边的中点,点是边上的动点,求的最小值___.
2、小华的作业中有一道数学题:“如图,AC,BD在AB的同侧,BD=4,AB=4,AC=1,∠CED=120°,点E是AB的中点,求CD的最大值.”哥哥看见了,提示他将△ACE和△BDE分别沿CE,连接A′B′.最后小华求解正确,得到CD的最大值是 _____.
3、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.若AD=3cm,BE=1cm,则DE=_________.
4、边长为1的小正方形组成如图所示的6×6网格,点A,B,C,D,E,F,G,H都在格点上.其中到四边形ABCD四个顶点距离之和最小的点是_________.
5、如图,∠ACB=90°,AC=BC,AD⊥CD于点D,BE⊥CD于点E,有下面四个结论:① △CAD≌△BCE; ② ∠ABE=∠BAD; ③ AB=CD; ④ CD=AD+DE.其中所有正确结论的序号是____________.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在中,是角平分线,,.
(1)求的度数;
(2)若,求的度数.
2、阅读填空,将三角尺(△MPN,∠MPN=90°)放置在△ABC上(点P在△ABC内),如图①所示,三角尺的两边PM、PN恰好经过点B和点C,我们来研究∠ABP与∠ACP是否存在某种数量关系.
(1)特例探索:
若∠A=50°,则∠PBC+∠PCB= 度,∠ABP+∠ACP= 度.
(2)类比探索:
∠ABP、∠ACP、∠A的关系是 .
(3)变式探索:
如图②所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是 .
3、如图,在△ABC中,CE平分∠ACB交AB于点E,AD是△ABC边BC上的高,AD与CE相交于点F,且∠ACB=80°,求∠AFE的度数.
4、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一.如图1所示的“三等分角仪”是利用阿基米德原理做出的.这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OA=OC=PC.∠AOB为要三等分的任意角.则利用“三等分角仪”可以得到∠APB =∠AOB.
我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明.
已知:如图2,点O,C分别在∠APB的边PB,PA上,且OA=OC=PC.
求证:∠APB =∠AOB.
5、如图,和是顶角相等的等腰三角形,BC,DE分别是这两个等腰三角形的底边.求证.
6、在等边中,D、E是BC边上两动点(不与B,C重合)
(1)如图1,,求的度数;
(2)点D在点E的左侧,且AD=AE,点E关于直线AC的对称点为F,连接AF,DF.
①依题意将图2补全;
②求证:.
7、如图,将一副直角三角板的直角顶点C叠放在一起.
(1)如图(1),若∠DCE=33°,则∠BCD= ,∠ACB= .
(2)如图(1),猜想∠ACB与∠DCE的大小有何特殊关系?并说明理由.
(3)如图(2),若是两个同样的直角三角板60°锐角的顶点A重合在一起,则∠DAB与∠CAE的数量关系为 .
8、如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,∠BAE=∠CAD,AB=AE,AD=AC.
(1)求证:∠DEC=∠BAE;
(2)如图2,当∠BAE=∠CAD=30°,AD⊥AB时,延长DE、AB交于点G,请直接写出图中除△ABE、△ADC以外的等腰三角形.
9、如图,在等腰△ABC和等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE且C、E、D三点共线,作AM⊥CD于M.若BD=5,DE=4,求CM.
10、已知,如图,AB=AD,∠B=∠D,∠1=∠2=60°.
(1)求证:△ADE≌△ABC;
(2)求证:AE=CE.
-参考答案-
一、单选题
1、B
【分析】
已知,得到,根据外角性质,得到,,再将两式相加,等量代换,即可得解;
【详解】
解:如图所示,
∵,
∴,
∵,,
∴,
∵,,
∴,
∵,,
∴;
故选D.
【点睛】
本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.
2、D
【分析】
根据等腰三角形的等边对等角的性质及三线合一的性质判断.
【详解】
解:∵AB=AC,点D是BC边中点,
∴ÐB=ÐC,AD⊥BC,ÐBAD=ÐCAD,
故选:D.
【点睛】
此题考查了等腰三角形的性质:等边对等角,三线合一,熟记等腰三角形的性质是解题的关键.
3、B
【分析】
根据三角形的外角性质解答即可.
【详解】
解:∵∠ACD=60°,∠B=20°,
∴∠A=∠ACD−∠B=60°−20°=40°,
故选:B.
【点睛】
此题考查三角形的外角性质,关键是根据三角形外角性质解答.
4、A
【分析】
利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,则根据全等三角形的判定方法可根据“SSS”可判断△OCD≌△O′C′D′,然后根据全等三角形的性质得到∠A′OB′=∠AOB.
【详解】
解:由作法可得OD=OC=OD′=OC′,CD=C′D′,
所以根据“SSS”可判断△OCD≌△O′C′D′,
所以∠A′OB′=∠AOB.
故选:A.
【点睛】
本题考查了作图﹣基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理.
5、B
【分析】
根据题意画出图形,利用等腰三角形的性质及三角形内角和定理即可得到答案.
【详解】
如图,在△ABC中,CD是边AB上的中线
∵AD=CD=BD
∴∠A=∠DCA,∠B=∠DCB
∵∠A+∠ACB+∠B=180°
∴ ∠A+∠DCA+∠DCB+∠B=180
即2∠A+2∠B=180°
∴∠A+∠B=90°
∴∠ACB=90°
∴△ABC是直角三角形
故选:B
【点睛】
本题考查了等腰三角形的性质及三角形内角和定理,熟练运用这两个知识是关键.
6、D
【分析】
设第三根木棒长为x厘米,根据三角形的三边关系可得8﹣5<x<8+5,确定x的范围即可得到答案.
【详解】
解:设第三根木棒长为x厘米,由题意得:
8﹣5<x<8+5,即3<x<13,
故选:D.
【点睛】
此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.
7、A
【分析】
根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.
【详解】
解:三根木条即为三角形的三边长,
即为利用确定三角形,
故选:A.
【点睛】
题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.
8、A
【分析】
由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.
【详解】
解:由折叠得∠B=∠BCD,
∵∠A+∠B+∠ACB=180°,,,
∴65°+2∠B+25°=180°,
∴∠B=45°,
故选:A.
【点睛】
此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.
9、D
【分析】
由SAS即可证明,则①正确;有∠CAE=∠CDB,然后证明△ACM≌△DCN,则②正确;由CM=CN,∠MCN=60°,即可得到为等边三角形,则③正确;由AD∥CE,则∠DAO=∠NEO=∠CBN,由外角的性质,即可得到答案.
【详解】
解:∵△DAC和△EBC均是等边三角形,
∴AC=CD,BC=CE,∠ACD=∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD,∠MCN=180°-∠ACD-∠BCE=60°,
在△ACE和△DCB中,
,
∴△ACE≌△DCB(SAS),则①正确;
∴AE=BD,∠CAE=∠CDB,
在ACM和△DCN中,
,
∴△ACM≌△DCN(ASA),
∴CM=CN,;则②正确;
∵∠MCN=60°,
∴为等边三角形;则③正确;
∵∠DAC=∠ECB=60°,
∴AD∥CE,
∴∠DAO=∠NEO=∠CBN,
∴;则④正确;
∴正确的结论由4个;
故选D.
【点睛】
本题考查了等边三角形的性质与判定,全等三角形的判定与性质,平行线的性质与判定,综合性较强,但难度不是很大,准确识图找出全等三角形是解题的关键.
10、A
【分析】
利用三个平角的和减去中间三角形的内角和,再减去三个的角即可.
【详解】
解:,,
,
,
,
,
故选:.
【点睛】
本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.
二、填空题
1、
【分析】
连接,交于点,连接,则的最小值为,再由已知求出的长即可.
【详解】
解:连接,交于点,连接,
是等边三角形,是边中点,
点与点关于对称,
,
,
的最小值为,
是的中点,
,
,的面积为,
,
的最小值为,
故答案为:.
【点睛】
本题考查了等边三角形的性质,将军饮马河原理,熟练掌握等边三角形的性质,灵活运用将军饮马河原理是解题的关键.
2、7
【分析】
由翻折的性质可证△EB'A'是等边三角形,则A'B'=A'E=2,再根据CD≤A'C+A'B'+B'D,即可求出CD的最大值.
【详解】
解:∵AB=4,点E为AB的中点,
∴AE=BE=2,
∵∠CED=120°,
∴∠AEC+∠DEB=60°,
∵将△ACE和△BDE分别沿CE,DE翻折得到△A′CE和△B′DE,
∴A'C=AC=1,AE=A'E=2,∠AEC=∠CEA',DB=DB'=4,BE=B'E=2,∠DEB=∠DEB',
∴∠A'EB'=60°,A'E=B'E=2,
∴△EB'A'是等边三角形,
∴A'B'=A'E=2,
∴当点C,点A',点B',点D四点共线时,CD有最大值=A'C+A'B'+B'D=7,
故答案为:7.
【点睛】
本题主要考查了翻折的性质,等边三角形的判定与性质,两点之间,线段最短等性质,证明△EB'A'是等边三角形是解题的关键.
3、2cm
【分析】
易证∠CAD=∠BCE,即可证明BEC≌△DAC,可得CD=BE,CE=AD,根据DE=CE-CD,即可解题.
【详解】
解:∵∠ACB=90°,
∴∠BCE+∠DCA=90°.
∵AD⊥CE,
∴∠DAC+∠DCA=90°.
∴∠BCE=∠DAC,
在△BEC和△DAC中,
∵∠BCE=∠DAC,∠BEC=∠CDA=90°.BC=AC,
∴△BEC≌△DAC(AAS),
∴CE=AD=3cm,CD=BE=1cm,
DE=CE-CD=3-1=2 cm.
故答案是:2cm.
【点睛】
此题是三角形综合题,主要考查了全等三角形的判定,全等三角形对应边相等的性质,本题中求证△CDA≌△BEC是解题的关键.
4、E
【分析】
到四边形ABCD四个顶点距离之和最小的点是对角线的交点,连接对角线,直接判断即可.
【详解】
如图所示,连接BD、AC、GA、GB、GC、GD,
∵,,
∴到四边形ABCD四个顶点距离之和最小是,该点为对角线的交点,
根据图形可知,对角线交点为E,
故答案为:E.
【点睛】
本题考查了三角形三边关系,解题关键是通过连接辅助线,运用三角形三边关系判断点的位置.
5、①②④
【分析】
由∠ACB=90°,BE⊥CD,AD⊥CD,得到∠ACD+∠BCE=90°,∠ADC=∠CEB=90°,则∠ACD+∠CAD=90°,AD∥BE,即可判断②,即可利用AAS证明△CAD≌△BCE,即可判断①;则AD=CE,得到CD=CE+DE=AD+DE,即可判定④;由AB>AC>CD,得到AB≠CD,即可判断③.
【详解】
解:∵∠ACB=90°,BE⊥CD,AD⊥CD,
∴∠ACD+∠BCE=90°,∠ADC=∠CEB=90°,
∴∠ACD+∠CAD=90°,AD∥BE,
∴∠CAD=∠BCE,∠ABE=∠BAD,故②正确;
又∵AC=CB,
∴△CAD≌△BCE(AAS),故①正确;
∴AD=CE,
∴CD=CE+DE=AD+DE,故④正确,
∵AB>AC>CD,
∴AB≠CD,故③错误;
故答案为:①②④.
【点睛】
本题主要考查了全等三角形的性质与判定,平行线的性质与判定,熟知相关知识是解题的关键.
三、解答题
1、
(1);
(2).
【分析】
(1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;
(2)根据垂直得出,然后根据三角形内角和定理即可得.
(1)
解:∵,,
∴,
∵AD是角平分线,
∴,
∴;
(2)
∵,
∴,
∴,
∴.
【点睛】
题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.
2、(1)90,40 ;(2)∠ABP+∠ACP+∠A=90°;(3)∠A+∠ACP-∠ABP=90°.
【分析】
(1)由三角形内角和为180°计算和中的角的关系即可.
(2)由(1)所得即可得出∠ABP、∠ACP、∠A的关系为∠ABP+∠ACP+∠A=90°.
(3)由三角形外角的性质即可推出∠A+∠ACP-∠ABP=90°.
【详解】
(1)在中
∵∠MPN=90°
∴∠PBC+∠PCB=180°-∠MPN=180°-90°=90°
在中
∵∠A+∠ABC+∠ACB=180°
又∵∠ABC=∠PBC+∠ABP,∠ACB=∠ACP+∠BCP
∴∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°
∵∠PBC+∠PCB=90°,∠A=50°
∴∠ABP +∠ACP=180°-90°-50°=40°
(2)由(1)问可知∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°
又∵∠PBC+∠PCB=90°
∴∠A+∠ABP +∠ACP=180°-(∠PBC+∠PCB)=180°-90°=90°
(3)如图所示,设PN与AB交于点H
∵∠A+∠ACP=∠AHP
又∵∠ABP+∠MPN =∠AHP
∴∠A+∠ACP=∠ABP+∠MPN
又∵∠MPN =90°
∴∠A+∠ACP =90°+∠ABP
∴∠A+∠ACP-∠ABP=90°.
【点睛】
本题考查了三角形的性质以及三角尺的角度计算问题,三角板的角度分别为90°,45°,45°;90°,60°,30°两种直角三角尺,三角形内角和是180°,三角形的一个外角等于与它不相邻的两个内角的和.
3、∠AFE=50°.
【分析】
根据CE平分∠ACB,∠ACB=80°,得出∠ECB=,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.
【详解】
解:∵CE平分∠ACB,∠ACB=80°,
∴∠ECB=,
∵AD是△ABC边BC上的高,AD⊥BC,
∴∠ADC=90°,
∴∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,
∴∠AFE=∠DFC=50°.
【点睛】
本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.
4、见解析
【分析】
由,得出为等腰三角形,由外角的性质及等量代换得,再次利用外角的性质及等量代换得,即可证明.
【详解】
解:,
为等腰三角形,
,
由外角的性质得:,
,
再由外角的性质得:,
,
.
【点睛】
本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解.
5、见解析
【分析】
由和是顶角相等的等腰三角形,得出知、、,证即可得证.
【详解】
解:和是顶角相等的等腰三角形,得出,
,,,
在和中,
,
,
.
【点睛】
本题主要考查全等三角形的判定与性质,解题的关键是熟练掌握等腰三角形的性质与全等三角形的判定和性质.
6、(1);(2)①作图见解析;②证明见解析
【分析】
(1)等边三角形中,由知,,进而求出的值;
(2)①作图见详解;② ,,,点E,F关于直线对称,,,,为等边三角形,进而可得到.
【详解】
解:(1)为等边三角形
.
(2)①补全图形如图所示,
②证明:为等边三角形
,
点E,F关于直线对称
,
即
为等边三角形
.
【点睛】
本题考察了等边三角形的判定与性质,等腰三角形的性质,轴对称的性质.解题的关键在于角度的转化.
7、(1)57°,147°;(2)∠ACB=180°-∠DCE,理由见解析;(3)∠DAB+∠CAE=120°
【分析】
(1)根据角的和差定义计算即可.
(2)利用角的和差定义计算即可.
(3)利用特殊三角板的性质,角的和差定义即可解决问题.
【详解】
解:(1)由题意,
;
;
故答案为:57°,147°.
(2)∠ACB=180°-∠DCE,
理由如下:
∵ ∠ACE=90°-∠DCE,∠BCD=90°-∠DCE,
∴ ∠ACB=∠ACE+∠DCE+∠BCD
=90°-∠DCE+∠DCE+90°-∠DCE
=180°-∠DCE.
(3)结论:∠DAB+∠CAE=120°.
理由如下:
∵∠DAB+∠CAE=∠DAE+∠CAE+∠BAC+∠CAE=∠DAC+∠EAB,
又∵∠DAC=∠EAB=60°,
∴∠DAB+∠CAE=60°+60°=120°.
故答案为:∠DAB+∠CAE=120°.
【点睛】
本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
8、(1)见解析;(2)△AEF、△ADG、△DCF、△ECD
【分析】
(1)根据已知条件得到∠BAE=∠CAD,根据全等三角形的性质得到∠AED=∠ABC,根据等腰三角形的性质得到∠ABC=∠AEB,于是得到结论;
(2)根据等腰三角形的判定定理即可得到结论.
【详解】
证明:(1)如图1,∵∠BAE=∠CAD,
∴∠BAE+∠CAE=∠CAD+∠CAE,
即∠BAC=∠EAD,
在△AED与△ABC中,
∴△AED≌△ABC,
∴∠AED=∠ABC,
∵∠BAE+∠ABC+∠AEB=180°,
∠CED+∠AED+∠AEB=180°,
∵AB=AE,
∴∠ABC=∠AEB,
∴∠BAE+2∠AEB=180°,
∠CED+2∠AEB=180°,
∴∠DEC=∠BAE;
(2)解:如图2,
①∵∠BAE=∠CAD=30°,
∴∠ABC=∠AEB=∠ACD=∠ADC=75°,
由(1)得:∠AED=∠ABC=75°,
∠DEC=∠BAE=30°,
∵AD⊥AB,
∴∠BAD=90°,
∴∠CAE=30°,
∴∠AFE=180°−30°−75°=75°,
∴∠AEF=∠AFE,
∴△AEF是等腰三角形,
②∵∠BEG=∠DEC=30°,∠ABC=75°,
∴∠G=45°,
在Rt△AGD中,∠ADG=45°,
∴△ADG是等腰直角三角形,
③∠CDF=75°−45°=30°,
∴∠DCF=∠DFC=75°,
∴△DCF是等腰直角三角形;
④∵∠CED=∠EDC=30°,
∴△ECD是等腰三角形.
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键.
9、CM=7.
【分析】
根据题意由“SAS”可证△AEC≌△ADB,可得BD=CE,由等腰三角形的性质可得DM=ME=2进行分析计算即可得出答案.
【详解】
解:∵∠BAC=∠DAE,
∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,
∴∠BAD=∠CAE,
在△AEC和△ADB中,
,
∴△AEC≌△ADB(SAS),
又∵BD=5,
∴CE=BD=5,
∵AD=AE,AM⊥CD,DE=4,
∴,
∴CM=CE+EM=5+2=7.
【点睛】
本题考查全等三角形的判定和性质以及等腰三角形的性质,熟练掌握全等三角形的判定定理是解答本题的关键.
10、(1)见解析;(2)见解析
【分析】
(1)根据∠1=∠2可推出∠DAE=∠BAC,然后结合全等三角形的判定定理进行证明;
(2)由全等三角形的性质可得AE=AC,结合∠2=60°可推出△AEC为等边三角形,据此证明.
【详解】
(1)证明:∵∠1=∠2
∴∠1+=∠2+
即∠DAE=∠BAC
在△ADE和△ABC中
∴△ADE≌△ABC(ASA)
(2)证明:∵△ADE≌△ABC
∴AE=AC
又∵∠2=60°
∴△AEC为等边三角形
∴AE=CE
【点睛】
此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法.
数学七年级下册第十四章 三角形综合与测试习题: 这是一份数学七年级下册第十四章 三角形综合与测试习题,共32页。试卷主要包含了如图,点D等内容,欢迎下载使用。
数学第十四章 三角形综合与测试精练: 这是一份数学第十四章 三角形综合与测试精练,共33页。试卷主要包含了若一个三角形的三个外角之比为3,已知等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题: 这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共37页。